全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

Effective approach for outdoor obstacle detection by clustering LIDAR data context
Effective approach for outdoor obstacle detection by clustering LIDAR data context

DOI: 10.15918/j.jbit1004-0579.201625.0406

Keywords: context modeling clustering algorithm based on fast search and discovery of density peaks(CBFD) Hull algorithm obstacle detection obstacle fusion
context modeling clustering algorithm based on fast search and discovery of density peaks(CBFD) Hull algorithm obstacle detection obstacle fusion

Full-Text   Cite this paper   Add to My Lib

Abstract:

A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).
A method of environment mapping using laser-based light detection and ranging (LIDAR) is proposed in this paper. This method not only has a good detection performance in a wide range of detection angles, but also facilitates the detection of dynamic and hollowed-out obstacles. Essentially using this method, an improved clustering algorithm based on fast search and discovery of density peaks (CBFD) is presented to extract various obstacles in the environment map. By comparing with other cluster algorithms, CBFD can obtain a favorable number of clusterings automatically. Furthermore, the experiments show that CBFD is better and more robust in functionality and performance than the K-means and iterative self-organizing data analysis techniques algorithm (ISODATA).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133