全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于AdaBoost法在代谢综合征不平衡数据分类中的应用
Based on the application of AdaBoost+decision tree for metabolic syndrome with imbalanced data

Keywords: 代谢综合征,AdaBoost,决策树,不平衡数据集

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的 (1)针对医疗数据不平衡的特点,以代谢综合征为例,通过比较单纯决策树与AdaBoost+决策树分类代谢综合征的性能,从而确定AdaBoost+决策树在医疗不平衡数据挖掘中的优点,为计算机辅助诊断代谢综合征提供方法学参考。(2)采用决策树探讨代谢综合征的影响因素。方法 采用AdaBoost平衡代谢综合征数据,并比较数据平衡前后决策树建模的性能,采用F-value,G-mean和AUC分析评价模型。结果 (1)相较于单纯决策树,AdaBoost+决策树的F-value值提高6.3%,G-mean提高3.5%,AUC提高0.4%,分别表明采用AdaBoost+决策树分类代谢综合征患者识别的性能提高6.3%,数据整体的分类精度提高3.5%;模型的综合分类能力提高0.4%。(2)探讨决策树影响因素均显示:空腹血糖、高密度脂蛋白、收缩压、年龄、体重指数是代谢综合征的主要影响因素。此外,在本研究中,决策树提示:若FPG>6.02,BMI>24.99,SBP>139,age≤46,则患有代谢综合征;若FPG≤6.02,HDL-C≤0.99,BMI≤24.99,age≤61,则不患代谢综合征。结论 采用AdaBoost+决策树的性能优于决策树,使用决策树所得结果与相关专业研究中代谢综合征影响因素相同。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133