|
- 2016
利用弹性体增韧木粉/HDPE复合材料
|
Abstract:
为提高木塑复合材料的韧性,在木粉/高密度聚乙烯(WF/HDPE)复合材料制备过程中引入了3种弹性体:聚烯烃弹性体(POE)、弹性体改性聚乙烯(BPB)和接枝改性的聚烯烃弹性体(A669)。通过对WF/HDPE复合材料冲击强度和抗弯弹性模量的测试,确定出既能有效提高WF/HDPE复合材料韧性又能维持材料刚性的增韧剂种类及其用量,并通过结晶行为、热力学性能及界面结合分析等探讨了其增韧原理。通过对比可知, A669的增韧效果最为明显,质量分数为4%时冲击强度达到15.31 kJ/m2,相对于无添加配方提高了52.34%且抗弯弹性模量只下降6.09%。XRD和DSC分析结果表明:A669的添加阻碍了WF/HDPE复合材料的结晶行为,使其在略低的温度下才可以结晶,且结晶度下降,晶粒尺寸增大,衍射角所对应的衍射面增大,因此吸收和损耗了更多的能量;A669的添加还降低了WF/HDPE复合材料的玻璃态转变温度。DMA和SEM分析结果显示:A669的添加使WF/HDPE复合材料呈现出显著的黏性特征,断裂面的HDPE塑料基质出现拉丝现象,从而达到提高材料韧性的效果。转矩流变测试表明A669的添加使WF/HDPE复合材料的扭矩略有降低,对加工没有不利影响。适当添加A669可以使木塑复合材料同时具备良好的韧性和刚性,对扩大其在建筑模板等领域的应用具有重要意义。 Three kinds of elastomers, polyolefin elastomer (POE), elastomer modified polyethylene (BPB) and graft modified polyolefin elastomer (A669) were introduced to preparation process of wood flour/high density polyethylene (WF/HDPE) composite to improve the toughness of wood-plastic composites. The kinds and contents of toughening agent at which can simultaneously improve the toughness and maintain the rigidity of WF/HDPE composites were determined by the impact strength and flexural elastic modulus test of WF/HDPE composites. The toughening principles were analyzed by the aid of the crystallization behavior, thermal dynamic property and interface bonding analysis. Through comparison, it shows that A669 is the most effective one; when adding mass fraction is 4%, the impact strength is 15.31 kJ/m2, increases by 52.34% comparing to the composite without A669, while the flexural elastic modulus just decreases by 6.09%. XRD and DSC analysis results show that, adding A669 hinders the crystallization behavior of WF/HDPE composites, which decreases the crystallization temperature and the crystallinity, while increases the grain size and the size of the diffraction surface corresponding to the diffraction angle. Thus more energy is absorbed and lost, and the glass transition temperature of WF/HDPE composite decreases. The DMA and SEM analysis results show that, the WF/HDPE composites with A669 present more viscosity characteristic, and the wiredrawing phenomenon of plastic matrix appears on the fracture surface, improving the toughness of the material. The torque rheometer test shows that, the balance torque of WF/HDPE composites does not change significantly, which indicates that A669 will not adversely affect the processing. Therefore, A669 can provide wood-plastic composite with both good toughness and stiffness under an appropriate use level. The results of present study will greatly promote the application of wood-plastic composite in building templates etc.
[1] | 王清文, 王伟宏. 木塑复合材料与制品[M]. 北京:化学工业出版社, 2007:1-2. WANG Q W, WANG W H. Wood plastic composite materials and products[M]. Beijing:Chemical Industry Press, 2007:1-2(in Chinese). |
[2] | 李兰杰, 刘得志, 陈占勋. POE和mPE增韧木塑复合材料的研究[J]. 塑料, 2005, 34(6):28-31. LI L J, LIU D Z, CHEN Z X. Wood-plastics composite toughened by mPE and POE[J]. Plastics, 2005, 34(6):28-31(in Chinese). |
[3] | 中华人民共和国国家发展和改革委员会. 塑料冲击性能小试样试验方法:HG/T 3841-2006[S]. 北京:化学工业出版社, 2006. The National Development and Reform Commission of the People's Republic of China. Plastics-Determination of impact properties by use of small specimens:HG/T 3841-2006[S]. Beijing:Chemical Industry Press, 2006(in Chinese). |
[4] | HUANG Y, JIANG S, WU L, et al. Characterization of LLDPE/Nano-SiO2 composites by solid-state dynamic mechanical spectroscopy[J]. Polymer Testing, 2004, 23(1):9-15. |
[5] | 刘天. 增强壳层结构共挤出HDPE基木塑复合材料性能研究[D]. 哈尔滨:东北林业大学, 2014. LIU T. Study of co-extruded HDPE based wood plastic composites with a reinforced shell structure[D]. Harbin:Northeast Forestry University, 2014(in Chinese). |
[6] | TAJVIDI M, FALK R H, HERMANSON J C. Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis[J]. Journal of Applied Polymer Science, 2006, 101(6):4341-4349. |
[7] | 李晶晶, 李大纲, 李爱军, 等. 离子聚合物增容增韧木塑复合材料的研究[J]. 工程塑料应用, 2013, 41(2):84. LI J J, LI D G, LI A J, et al. Effect of ionomer on compatibilization and toughening of wood/PE-HD composites[J]. Engineering Plastics Application, 2013, 41(2):84(in Chinese). |
[8] | 刘玉强. 木塑复合材料建筑模板的研究[D]. 昆明:昆明理工大学, 2006. LIU Y Q. Study of building formwork of wood-fiber plastics composite[D]. Kunming:Kunming University of Science and Technology, 2006(in Chinese). |
[9] | 中华人民共和国国家质量监督检验检疫总局. 木塑地板:GB/T 24508-2009[S]. 北京:中国标准出版社, 2009. General Administration of Quality Supervision Inspection and Quarantine of the People's Republic of China. Wood-plastic composite flooring:GB/T 24508-2009[S]. Beijing:Standards Press of China, 2009(in Chinese). |
[10] | 中华人民共和国国家质量监督检验检疫总局. 建筑模板用木塑复合板:GB/T 29500-2013[S]. 北京:中国标准出版社, 2013. General Administration of Quality Supervision Inspection and Quarantine of the People's Republic of China. Wood-plastic composite boards for concrete-form:GB/T 29500-2013[S]. Beijing:Standards Press of China, 2013(in Chinese). |
[11] | 姜峰, 秦特夫. 木塑复合材料增韧的研究[J]. 塑料工业, 2007, 35(增刊1):137-140. JIANG F, QIN T F. Research on toughening of wood-plastic composite[J]. China Plastic Industry, 2007, 35(Suppl.1):137-140(in Chinese). |
[12] | 刘运学, 滕飞, 范兆荣. 聚氯乙烯/热塑性弹性体共混增韧的研究进展[J]. 高分子通报, 2011, 24(11):20-25. LIU Y X, TENG F, FAN Z R. Progress in studies on the toughening modification of PVC/TPE blends[J]. Polymer Bulletin, 2011, 24(11):20-25(in Chinese). |
[13] | 樊卫华, 刘玉坤, 白娟, 等. PE-HD/E-TMB共混物的结晶形态研究[J]. 工程塑料应用, 2012, 40(7):60-63. FAN W H, LIU Y K, BAI J, et al. Study on crystalline morphology of PE-HD/E-TMB blends[J]. Engineering Plastics Application, 2012, 40(7):60-63(in Chinese). |
[14] | 文月琴, 徐建锋, 宋剑斌. 不同含量POE增韧竹塑复合材料的力学和动态力学性能[J]. 材料导报, 2015, 29(6):75-77. WEN Y Q, XU J F, SONG J B. The mechanical properties and dynamic mechanical properties of bamboo plastic composites toughened with different amounts of POE[J]. Materials Review, 2015, 29(6):75-77(in Chinese). |
[15] | 敖玉辉, 张会轩, 孙伟权, 等. 不同弹性体增韧聚丙烯的研究[J]. 中国塑料, 2005, 19(10):53-56. AO Y H, ZHANG H X, SUN W Q, et al. Polypropylene toughened by different elastomers[J]. China Plastic, 2005, 19(10):53-56(in Chinese). |
[16] | MA L, WANG M Z, GE X W. Surface treatment of poly (ethylene terephthalate) by gamma-ray induced graft copolymerization of methyl acrylate and its toughening effect on poly(ethylene terephthalate)/elastomer blend[J]. Radiation Physics and Chemistry, 2013, 90:92-97. |
[17] | American Society for Testing and Materials International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials:ASTM D790-03[S]. West Conshohocken:ASTM International, 2003. |
[18] | 曹阳, 秦军, 谢普, 等. 三种方法制备HDPE/LDHs复合材料的性能比较[J]. 高分子材料科学与工程, 2012, 28(10):65-66. CAO Y, QIN J, XIE P, et al. A comparison of three methods for preparing HDPE/LDHs Nanocomposites[J]. Polymer Materials Science and Engineering, 2012, 28(10):65-66(in Chinese). |
[19] | 金日光, 华幼卿. 高分子物理[M]. 北京:化学工业出版社, 2006:143-151. JIN R G, HUA Y Q. Polymer physics[M]. Beijing:Chemical Industry Press, 2006:143-151(in Chinese). |
[20] | 张乾, 解云川, 范晓东. DSC法测定聚乙烯结晶度的研究[J]. 中国塑料, 2002, 16(9):73-74. ZHANG Q, XIE Y C, FAN X D. Determination of polyethylene crystallinity by DSC[J]. China Plastics, 2002, 16(9):73-74(in Chinese). |
[21] | BEG M D H, PICKERING K L. Accelerated weathering of unbleached and bleached Kraft wood fibre reinforced polypropylene composites[J]. Polymer Degradation and Stability, 2008, 93(10):1-8. |
[22] | 汪欢欢, 李倩, 黄志钱, 等. 高密度聚乙烯/纳米纤维素纤维复合材料的制备及表征[J]. 塑料科技, 2014, 42(5):95-96. WANG H H, LI Q, HUANG Z Q, et al. Preparation and characterization of HDPE/nano-cellulose fiber composites[J]. Plastics Science and Technology, 2014, 42(5):95-96(in Chinese). |