|
- 2018
玄武岩纤维布增强树脂基复合材料约束高温损伤混凝土轴压力学性能
|
Abstract:
对36个玄武岩纤维布增强树脂基复合材料(BFRP)约束加固的高温损伤混凝土圆柱体和15个不同高温损伤的对比试件进行了轴压试验。试验表明,BFRP侧向约束能显著改变混凝土圆柱体的破坏形态,提高混凝土圆柱体的轴压强度和变形能力。其中二层BFRP包裹的200℃、400℃、600℃和800℃高温损伤混凝土圆柱体的轴压强度分别提高了56%、82%、234%和250%,轴向变形分别提高了328%、198%、232%和136%。采用典型的纤维增强复合材料约束常温未损伤混凝土轴压强度和变形计算模型预测纤维增强复合材料约束高温损伤混凝土轴压极限强度和极限变形时存在较大的偏差。基于本文试验数据,确定了BFRP约束高温损伤混凝土极限应力和极限应变计算模型中与温度相关的参量,建议了适用于预测纤维增强复合材料约束高温损伤混凝土的极限应力计算模型和极限应变计算模型。 An experimental study on the axial compressive behavior of 36 elevated temperature damaged and 15 unheated concrete cylinders wrapped with basalt fiber reinforced polymer(BFRP) sheets was conducted. The test results show that confinement can significantly change failure mode, improve the strength and ductility of elevated temperature damaged concrete cylinders. After confined with two layers of BFRP sheets, the strength of the cylinders damaged by 200℃, 400℃, 600℃ and 800℃ increases by 56%, 82%, 234% and 250%, respectively; And the axial deformation increases by 328%, 198%, 232% and 136%, respectively. The typical ultimate stress models and ultimate strain models for FRP-confined undamaged concrete are not suitable for confined elevated temperature damaged concrete cylinders. Based on the test results, variables for calculation of ultimate stress and ultimate strain are determined, and ultimate stress model and ultimate strain model of confined elevated temperature damaged concrete cylinders are proposed. 国家自然科学基金(51708349;11672185);浙江省自然科学基金(LY13E080020)
[1] | 陈适才, 陆新征, 任爱珠, 等. 火灾下混凝土结构破坏模拟的纤维梁单元模型[J]. 计算力学学报, 2009, 26(1):72-79. CHEN Shicai, LU Xinzheng, REN Aizhu, et al. Firer beam element model for the collapse simulation of concrete structures under fire[J]. Chinese Journal of Computational Mechanics, 2009, 26(1):72-79(in Chinese). |
[2] | 过镇海. 常温和高温下混凝土材料和构件的力学性能[M]. 北京:清华大学出版社, 2005. GUO Zhenhai. Mechanical properties of concrete materials and members at normal and elevated temperatures[M]. Beijing:Press of Tsinghua University, 2005(in Chinese). |
[3] | The Concrete Society. Design guidance for strengthening concrete structures using fiber composite materials:TR55[S]. UK:Crowthorne, 2012. |
[4] | JIAN C L, OZBAKKALOGLU T. Hoop strains in FRP-confined concrete columns:Experimental observations[J]. Materials and Structures, 2015, 48(9):2839-2854. |
[5] | Al-NIMRY H, HADDAD R, AFRAM S, et al. Effectiveness of advanced composites in repairing heat-damaged RC columns[J]. Materials and Structures, 2013, 46(11):1843-1860. |
[6] | OZBAKKALOGLU T, JIAN C L. Axial compressive behavior of FRP-confined concrete:Experimental test database and a new design-oriented model[J]. Composites Part B:Engineering, 2013, 55(12):607-634. |
[7] | 王铮. 混凝土高温后力学性能的试验研究[D]. 大连:大连理工大学, 2010. WANG Zheng. Experimental study on mechanical properties of concrete after high temperature[D]. Dalian:Dalian University of Technology, 2010(in Chinese). |
[8] | CHEN Y H, CHANG Y F, YAO G C, et al. Experimental research on post-fire behaviour of reinforced concrete columns[J]. Fire Safety Journal, 2009, 44(5):741-748. |
[9] | 徐玉野, 林燕卿, 杨清文, 等. CFRP加固火灾后混凝土短柱抗震性能的试验研究[J]. 工程力学, 2014, 31(8):92-100. XU Yuye, LIN Yanqing, YANG Qingwen, et al. Experimental study on seismic performance of concrete short columns after fire and strengthened with CFRP[J]. Engineering Mechanics, 2014, 31(8):92-100(in Chinese). |
[10] | 夏敏, 余江滔, 陆洲导. 受火后混凝土框架基于纤维模型的软件开发与试验验证[J]. 工程力学, 2016, 33(11):163-173. XIA Min, YU Jiangtao, LU Zhoudao. Software development and experimental verification on reinforced concrete frame after fire based on fiber element[J]. Engineering Mechanics, 2016, 33(11):163-173(in Chinese). |
[11] | TOUTANJI H, HAN M, GILBERT J, et al. Behavior of large-scale rectangular columns confined with FRP composites[J]. Journal of Composites for Construction, 2010, 14(1):62-71. |
[12] | YAQUB M, BAILEY C G. Repair of fire damaged circular reinforced concrete columns with FRP composites[J]. Construction and Building Materials, 2011, 25(1):359-370. |
[13] | America Concrete Institute. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures:ACI 440.2R[S]. Farmington Hills:ACI Committee, 2008. |
[14] | 中华人民共和国住房和城乡建设部. 混凝土结构加固设计规范:GB50367-2013[S]. 北京:中国建筑工业出版社, 2013. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Design code for strengthening concrete structure:GB50367-2013[S]. Beijing:China Architecture and Building Press, 2013(in Chinese). |
[15] | LAM L, TENG J G. Ultimate condition of fiber reinforced polymer-confined concrete[J]. Journal of Composites for Construction, 2004, 8(6):539-548. |
[16] | LENWARI A, RUNGAMORNRAT J, WOONPRASERT S. Axial compression behavior of fire-damaged concrete cylinders confined with CFRP sheets[J]. Journal of Composites for Construction, 2016, 20(5):04016027. |
[17] | OZBAKKALOGLU T, JIAN C L, Vincent T. FRP-confined concrete in circular sections:Review and assessment of stress-strain models[J]. Engineering Structures, 2013, 49(2):1068-1088. |
[18] | JIANG T, TENG J G. Analysis-oriented stress-strain models for FRP-confined concrete[J]. Engineering Structures, 2007, 29(11):2968-2986. |
[19] | 郭永昌, 钟健, 谢建和, 等. 碳纤维增强复合材料约束高温损伤高强混凝土轴压力学性能的试验研究[J]. 工业建筑, 2014, 44(10):1-5. GUO Yongchang, ZHONG Jiang, XIE Jianhe, et al. Experimental study of axial compressive behavior of CFRP-confined high-strength concrete damaged by high temperature[J]. Industrial Construction, 2014, 44(10):1-5(in Chinese). |
[20] | 李国强, 吴波, 韩林海. 结构抗火研究进展与趋势[J]. 建筑钢结构进展, 2006, 8(1):1-13. LI Guoqiang, WU Bo, HAN Linhai. Development of the research on fire-resistance of structures[J]. Progress in Steel Building Structures, 2006, 8(1):1-13(in Chinese). |
[21] | 王广勇, 刘庆, 张东明, 等. 火灾后型钢混凝土柱抗震性能有限元计算模型[J]. 工程力学, 2016, 33(11):183-192. WANG Guangyong, LIU Qing, ZHANG Dongming, et al. A finite element model for post-fire seismic performance of steel reinforced concrete columns[J]. Engineering Mechanics, 2016, 33(11):183-192(in Chinese). |
[22] | KODUR V K R, RAUT N K, MAO X Y, et al. Simplified approach for evaluating residual strength of fire-exposed reinforced concrete columns[J]. Materials and Structures, 2013, 46(12):2059-2075. |
[23] | JIANG T, TENG J G. Behavior and design of slender FRP-confined circular RC columns[J]. Journal of Composites for Construction, 2013, 17(4):443-453. |
[24] | 欧阳利军. 玄武岩纤维与碳纤维加固混凝土构件试验与理论研究[D]. 上海:同济大学, 2011. OUYANG Lijun. Experimental and theoretical study of basalt fiber and carbon fiber reinforced concrete members[D]. Shanghai:Tongji University, 2011(in Chinese). |
[25] | 欧阳利军, 丁斌, 陆洲导, 等. 玄武岩纤维与碳纤维加固短柱抗震试验研究[J]. 同济大学学报(自然科学版), 2013, 41(2):166-172. OUYANG Lijun, DING Bin, LU Zhoudao, et al. Experimental study on seismic performance of short columns strengthened with BFRP and CFRP[J]. Journal of Tongji University (Natural Science Edition), 2013, 41(2):166-172(in Chinese). |
[26] | JIAN C L, OZBAKKALOGLU T. Confinement model for FRP-confined high-strength concrete[J]. Journal of Compo-sites for Construction, 2013, 18(4):2537-2547. |
[27] | YAQUB M, BAILEY C G. Cross sectional shape effects on the performance of post-heated reinforced concrete columns wrapped with FRP composites[J]. Composite Structures, 2011, 93(3):1103-1117. |
[28] | BISBY L A, CHEN J F, LI S Q, et al. Strengthening fire-damaged concrete by confinement with fiber-reinforced polymer wraps[J]. Engineering Structures, 2011, 33(12):3381-3391. |
[29] | 中华人民共和国住房和城乡建设部. 纤维增强复合材料建设工程应用技术规范:GB50608-2010[S]. 北京:中国计划出版社, 2010. Ministry of Housing and Urban-Rural. Development of the People's Republic of China. Technical code for infrastructure application of FRP composites:GB50608-2010[S]. Beijing:China Planning Press, 2010(in Chinese). |