|
- 2018
橡胶颗粒-钢纤维混掺对碾压混凝土抗冻性及抗冲击性能的影响
|
Abstract:
本文研究了在质量分数为25%的醋酸钾(KAc)为冻融介质的环境中,橡胶颗粒(RP)-钢纤维(SF)混掺对碾压混凝土(RCC)抗冻性及抗冲击性能的影响,获得了冻融过程中RCC的抗弯冲击性能、相对动弹性模量、质量损失、微观形貌及孔结构变化等参数。结果表明:RCC累计质量损失随冻融次数增加而增大,RP对质量损失的影响较小,而SF能较明显控制质量损失快速增长,300次冻融循环后累计质量损失仅83.94 g/m2; RP能降低RCC的总孔隙率约0.6%,而SF能有效降低总孔隙率,但冻融后期锈蚀作用会导致总孔隙率迅速增长; SF能极大RCC提高抗弯冲击性能,试验条件下抗冲击次数从3~5次水平提升至140~170次水平,而RP对冲击性能并无明显影响,冻融结束掺有SF试验组RCC初、终裂次数降幅超过70%,但终裂次数仍达到30~40次的水平,绝对韧性均随冻融次数增加逐渐降低; RCC相对动弹模量均表现出先降低后缓慢回升的规律,掺有SF试验组下降阶段相对更短且幅度更小,最大仅8%,而RP影响并不明显,但4组降低程度均在10%内。 In this paper, the frost resistance and impact resistance of roller compacted concrete (RCC) mixed with rubber particles(RP) and steel fiber(SF) were investigated in 25% (by mass) potassium acetate (KAc) as the medium in freezing-thawing cycles. The flexural impact performance, relative dynamic elastic modulus, mass loss, microstructure, and pore structure of RCC were measured. The results show that the accumulated mass loss of RCC increases with the increase of freeze-thaw cycles. The RP have slight effect on the mass loss, the total porosity, the impact property and relative dynamic elastic modulus of RCC. However, the SF can obviously control the rapid growth of the mass loss and improve the flexural impact property. The cumulative mass loss of RCC with 300 freeze-thaw cycles is only 83.94 g/m2. The impact number of RCC with 1.3% (by volume) SF raises from 3-5 to 140-170. The initial and final impact number decreases by 70% after RCC specimens being subjected to 300 freeze-thaw cycles. The relative dynamic elastic modulus firstly decreases and then has a slow increase at the later stage. The maximum loss of relative dynamic elastic modulus is 8% when the SF reinforced RCC with 300 freeze-thaw cycles. The loss of relative dynamic elastic modulus of all specimens is less than 10%. 国家自然科学基金(51378042)
[1] | 中国民用航空总局. 民用航空器除冰/防冰:MH3145.49-1998[S]. 北京:中国民航出版社, 1998:66-68. China's Civil Aviation Administration. De/anti-icing for civil aircraft:MH3145.49-1998[S]. Beijing:Chinese Civil Aviation Press, 1998:66-68(in Chinese). |
[2] | 刘文博, 袁捷, 杨全兵. 除冰液对机场道面混凝土的破坏机制研究[J]. 华东交通大学学报, 2016(5):1-6. LIU W B, YUAN J, YANG Q B. Research on failure mechanism of deicing fluid in airport pavement concrete[J]. Journal of East China Jiaotong University, 2016(5):1-6(in Chinese). |
[3] | 董树国, 张国杰, 候黎阳, 等. 核磁共振数据分析混凝土孔隙率与抗盐冻关系[J]. 电子显微学报, 2015(5):428-432. DONG S G, ZHANG G J, HOU L Y, et al. Analysis of the relationship between the porosity and the salt freezing resistance of concrete by NMR data[J]. Journal of Chinese Electron Microscopy Society, 2015(5):428-432(in Chinese). |
[4] | SONG S M, BAO W Z, ZHAO W X, et al. Properties of concrete with high-volume limestone powder under low temperature conditions[M]. Germany:Trans Tech Publications, 2013:4. |
[5] | LIU J H, SONG S M, XU G Q, et al. Form and mechanism of sulfate attack on cement-based material made of limestone powder at low water-binder ratio under low temperature condition[J]. Journal of Wuhan University of Technology:Materials Science Edition, 2012(1):581-585. |
[6] | HUO J F, LI W L, SONG D T, et al. Experimental study on frost resistance properties of mixed aggregate concrete with mineral admixtures[J]. WIT Transactions on Engineering Sciences, 2013(7):413-418. |
[7] | 杨春峰, 杨敏. 废旧橡胶混凝土力学性能研究进展[J]. 混凝土, 2011(12):98-100, 109. YANG C F, YANG M. Research progress on mechanical performance of waste rubber concrete[J]. Concrete, 2011(12):98-100, 109(in Chinese). |
[8] | 白康. 水泥混凝土在机场道面除冰液作用下的抗冻性研究[D]. 南京:南京航空航天大学, 2009:20-61. BAI K. Research on freezing-thawing durability of concrete subjetaled to airfield pavement deicer[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009:20-61(in Chinese). |
[9] | 麻海燕, 吴雅玲, 余红发, 等. 机场道面除冰液作用下大掺量粉煤灰混凝土的抗冻性[J]. 建筑科学与工程学报, 2014, 31(2):78-83. MA H Y, WU Y L, YU H F, et al. Freeze-thaw durability of high colume fly ash content concrete exposed to airfielf pavement deicer[J]. Journal of Architetalure and Civil Engineering, 2014, 31(2):78-83(in Chinese). |
[10] | 孟庆超. 混凝土耐久性与孔结构影响因素的研究[D]. 哈尔滨:哈尔滨工业大学, 2006. MENG Q C. Study on the factors influencing the durability and pore structure of concrete[D]. Harbin:Harbin Institute of Technology, 2006(in Chinese). |
[11] | 张武满, 陈舒航, 羡慕, 等. 飞机与跑道除冰液对碾压混凝土的影响[C]//2015年第一届固废处理与生态材料学术交流会论文集. 北京:中国矿业大学, 2015. ZHANG W M, CHEN S H, XIAN M, et al. Influence of aircraft and airfield deicer on roller compacted concrete[C]//Proceedings of the First Academic Symposium on Solid Waste Treatment and Ecological Materials in 2015. Beijing:China University of Mining & Technology, 2015(in Chinese). |
[12] | 夏孝维, 黄志军. 废旧橡胶改性碾压混凝土强度试验研究[J]. 混凝土与水泥制品, 2013(8):17-20. XIA X W, HUANG Z J. Experimental study on strength of roller compacted concrete modified with waste rubber[J]. China Concrete and Cement Products, 2013(8):17-20(in Chinese). |
[13] | RANGARAJU P, SOMPURA K, OLEK J. Investigation into potential of alkali-acetate-based deicers to cause alkali-silica reaction in concrete[J]. Transportation Research Record Journal of the Transportation Research Board, 2006, 1979(1):69-78. |
[14] | 李创. 混凝土在机场除冰液作用下冻融破坏的微观结构机制研究[D]. 南京:南京航空航天大学, 2011:20-58. LI C. Study on microstructure mechanism of freezing-thawing of concretes subjetaled to airdrome deicer[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011:20-58(in Chinese). |
[15] | ZHANG W M, CHEN S H, LIU Y Z. Effect of weight and drop height of hammer on the flexural impact performance of fiber-reinforced concrete[J]. Construction and Building Materials, 2017(140):31-35. |
[16] | ZHANG W M, CHEN S H, ZHANG N. Low-velocity flexural impact response of steel fiber reinforced concrete subjected to freeze-thaw cycles in NaCl solution[J]. Construction and Building Materials, 2015, 101:522-526. |
[17] | 张峰, 蔡建军, 牛平霞, 等. 混凝土冻融损伤厚度的超声波检测[J]. 深圳大学学报(理工版), 2012, 03:207-210. ZHANG F, CAI J J, NIU P X. Ultrasonic detection of freeze-thaw damage thickness of concrete[J]. Journal of Shenzhen University Science and Engineering, 2012, 03:207-210(in Chinese). |
[18] | 麻海燕, 余红发, 白康, 等. 机场道面除冰液对高性能混凝土抗冻性的影响[J]. 硅酸盐通报, 2011, 30(4):860-864, 879. MA H Y, YU H F, BAI K, et al. Effect of deicing fluid on frost resistance of high performance concrete at airport pavement[J] Bulletin of the Chinese Ceramic Society, 2011, 30(4):860-864, 879(in Chinese). |
[19] | 朱洪波, 闫美珠, 李晨, 等. 图像分析宏观孔孔隙率对混凝土抗压强度的影响[J]. 建筑材料学报, 2015, 18(2):275-280. ZHU H B, YAN M Z, LI C, et al. Analysis of the influence of porosity of macroscopic pore on concrete strength by image method[J]. Journal of Building Materials, 2015, 18(2):275-280(in Chinese). |
[20] | 刘军, 田悦, 刘智. 低温条件下矿物掺合料对混凝土孔隙率的影响[J]. 沈阳建筑大学学报(自然科学版), 2007, 4(23):597-601. LIU J, TIAN Y, LIU Z. Study on porosity of low-temperature concrete with mineral admixture[J]. Journal of Shenyang Jianzhu University(Natural Science Edition), 2007, 4(23):597-601(in Chinese). |
[21] | 朱梁. 混凝土孔隙对其宏观力学性能的影响研究[D]. 大连:大连理工大学, 2016. ZHU L. Study on the influence of concrete pore on its macro mechanical properties[D]. Dalian:Dalian University of Technology, 2016(in Chinese). |
[22] | 杨芳. 橡胶粉粒径对碾压橡胶混凝土力学性能的影响研究[D]. 天津:天津大学, 2010. YANG F. Effect of particle size of rubber on mechanical properties of RCC[D]. Tianjin:Tianjin University, 2010(in Chinese). |
[23] | 管新建. 钢纤维混凝土的力学性能及路面工程应用研究[D]. 郑州:郑州大学, 2003. GUAN X J. Study on mechanical properties and pavement engineering application of steel fiber reinforced concrete[D]. Zhengzhou:Zhengzhou University, 2003(in Chinese). |
[24] | SHI X. Impact of airport pavement deicing products on aircraft and airfield infrastructure[M]. Washington:ACRP Synthesis, 2008. 余红发, 孙伟, 麻海燕, 等. 冻融和腐蚀因素作用下混凝土的损伤劣化参数分析. 建筑科学与工程学报,2011, 28(4):1-8. YU H F,SUN W,MA H Y,et al. Analysis of damage degradation parameters of concrete subjected to freezing-thawing cycles and chemical attack. Joural of Architecture and Civil Engineering, 2011, 28(4):1-8(in Chinese). |
[25] | ZHANG W M, ZHANG N, ZHOU Y. Effect of flexural impact on freeze-thaw and deicing salt resistance of steel fiber reinforced concrete[J]. Materials and Structures, 2016(49):5161-5168. |
[26] | 杨晨晨, 白英, 田晓宇, 等. 掺纤维橡胶混凝土抗冻性能研究[J]. 硅酸盐通报, 2016(10):3456-3460. YANG C C, BAI Y, TIAN X Y, et al. Study on frost resistance of fiber reinforced rubberized concrete[J]. Bulletin of the Chinese Ceramic Society, 2016(10):3456-3460(in Chinese). 中国人民解放军总后勤部军事交通运输部. 机场道面水泥混凝土配合比设计技术标准:GJB 1578-1992. 北京:中国人民解放军总参谋部, 1992. Military Transportation Department of the PLA General Logistics Department. Technical standard for airport pavement cement concrete mix design:GJB 1578-1992. Beijing:General Staff of the Chinese Seople's Liberation Army, 1992(in Chinese). American Concrete Institute. Guide for specifying, proportioning, mixing, placing, and finishing steel fiber reinforced concrete:ACI 544.3R-2008. Farmington Hills:American Concrete Institute, 2008. |
[27] | 曹秀丽, 曹志翔, 喻骁. 冻融循环对混凝土质量损失及相对动弹模量影响的试验研究[J]. 铁道建筑, 2013(3):125-127. CAO X L, CAO Z X, YU X. Experimental study on the influence of freeze-thaw cycles on mass loss and relative modulus of elasticity of concrete[J]. Railway Engineering, 2013(3):125-127(in Chinese). |
[28] | 马好霞, 余红发, 吴雅玲, 等. 机场道面抗冻性与冻融介质的相关性研究[J]. 哈尔滨工程大学学报, 2017, 38(10):1642-1649. MA H X, YU H F, WU Y L, et al. The correlation study between airfield pavement's freezing resistance and freezing-thawing mediums[J]. Journal of Harbin Engineering University, 2017, 38(10):1642-1649(in Chinese). |