全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于径向基函数神经网络的CFRP切削力预测
Prediction of cutting force in CFRP based on radial basis function neural network

DOI: 10.13801/j.cnki.fhclxb.20150612.001

Keywords: 碳纤维增强树脂基复合材料,切削力,纤维方向,神经网络,切屑形成
carbon fiber reinforced polymer
,cutting force,fiber orientation,neural network,chip formation

Full-Text   Cite this paper   Add to My Lib

Abstract:

碳纤维增强树脂基复合材料(CFRP)加工中基体相极易因切削力过大而破坏,并迅速扩展至加工表面以下而形成损伤。为了准确预测其切削力并加以控制,基于实验切削力数据建立了人工神经网络切削力模型,预测了不同纤维角度、切削深度和刀具角度下加工CFRP的切削力变化规律,并完成了不同刀具角度及切削参数下典型纤维角度CFRP单向板的直角切削实验,对预测模型进行验证,其预测精度可达85%以上。结合成屑过程在线显微观测结果可知:纤维角度是影响CFRP切削力的主要因素, 0°~135°范围内,切屑形成方式为切断型和开裂后弯断型;切削力随纤维角度增大呈先减小后增大的趋势, 135°时最大,随切削深度增加,切削力总体呈增大趋势。 In machining of carbon fiber reinforced polymer (CFRP), the matrix phase is easy to fail due to the excessive cutting force, which extends to the underneath of machining surface and forms damage rapidly. For the precise prediction and control of cutting force, we established an artificial neural network cutting force model based on the experimental cutting force data to predict the cutting force change rule in machining CFRP under different fiber orientations, cutting depths and tool angles. Orthogonal cutting experiments on CFRP unidirectional laminate of typical fiber orientation with different tool angles and cutting parameters were conducted to verify the predicting model, and the predicting precision is up to 85%. Combined with the online microscopic prediction results of chip forming process, it is concluded that the fiber orientation is the primary factor affecting the cutting forces of CFRP, as varies from 0° to 135°, chip formation ways include the crushing-dominated failure type and bending failure type; the cutting force firstly decreases and then increases as the fiber orientation angle increases, and is maximum at 135°; the cutting force increases generally as cutting depth increases. 国家"973"计划(2014CB046503);国家自然科学基金创新研究群体(51321004);教育部新世纪优秀人才支持计划(NCET-13-0081)

References

[1]  SOUSSIA A B, MKADDEM A, EL MANSORI M. Rigorous treatment of dry cutting of FRP-Interface consumption concept:A review[J]. International Journal of Mechanical Sciences, 2014, 83:1-29.
[2]  DANDEKAR C R, SHIN Y C. Modeling of machining of composite materials:A review[J]. International Journal of Machine Tools and Manufacture, 2012, 57:102-121.
[3]  TETI R. Machining of composite materials[J]. CIRP Annals-Manufacturing Technology, 2002, 51(2):611-634.
[4]  文亮, 姜丽萍, 张烘州, 等. 碳纤维增强复合材料单向层合板直角自由切削热特性试验研究[J]. 复合材料学报, 2015, 32(5):1470-1471. WEN L, JIANG L P, ZHANG H Z, et al. Experimental study on thermal characteristics when orthogonally machining carbon fiber-reinforced plastic composite unidirectional laminates[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1470-1471(in Chinese).
[5]  KOPLEV A, BUNSELL A R. Cutting of CFRP with single edge tool[C]//Advances in Composite Materials:Proceedings of the 3rd International Conference. Paris:Pergamon Press, 1980:1597-1605.
[6]  WANG D H, RAMULU M, AROLA D. Orthogonal cutting mechanisms of graphite/epoxy composite, Part 1:Unidirectional laminate[J]. International Journal of Machine & Tools Manufacture, 1995, 35(12):1623-1638.
[7]  WANG X M, ZHANG L C. An experimental investigation into the orthogonal cutting of unidirectional fibre reinforced plastics[J]. International Journal of Machine Tools and Manufacture, 2003, 43(10):1015-1022.
[8]  CALZADA K A. Modeling and interpretation of fiber orientation-based failure mechanisms in machining of carbon fiber-reinforced composites[D]. Illinois:University of Illinois at Urbana-Champaign, 2010.
[9]  ANTóNIO C A C, DAVIM J P, LAPA V. Artificial neural network based on genetic learning for machining of polyetheretherketone composite materials[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(11-12):1101-1110.
[10]  陈远玲, 龙卫仁, 张宝磊. 应用人工神经网络预测高速铣削淬硬钢的切削力[J]. 机械设计与制造, 2009(10):241-242. CHEN Y L, LONG W R, ZHANG B L. Using artificial neural networks to predict the cutting force of high-speed milling hardden steel[J]. Machinery Design & Manufacture, 2009(10):241-242(in Chinese).
[11]  陈锡渠, 彭晓南. 金属切削原理与刀具[M]. 北京:中国林业出版社, 2006:278-290. CHEN X Q, PENG X N. Principles of metal cutting and cutting tool[M]. Beijing:Chinese Forestry Press, 2006:278-290(in Chinese).
[12]  SHAW M C. Metal cutting principles[M]. New York:Oxford University Press, 2005:101-103.
[13]  闻新, 周露, 王丹力, 等. Matlab神经网络应用设计[M]. 北京:科学技术出版社, 2000:244-260. WEN X, ZHOU L, WANG D L et al. Application of neural network design of Matlab[M]. Beijing:China Science & Technology Press, 2000:244-260(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133