全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

P(GMA-co-HEMA)/SiO2大孔复合材料的制备及其在固定化脂肪酶中的应用
Preparation of P(GMA-co-HEMA)/SiO2 macroporous composite and its application in lipase immobilization

DOI: 10.13801/j.cnki.fhclxb.20150723.002

Keywords: SiO2大孔材料,原位聚合,大孔复合材料纳米薄膜,固定化,脂肪酶
macroporous SiO2 material
,in-situ polymerization,macroporous composite nano-film,immobilization,lipase

Full-Text   Cite this paper   Add to My Lib

Abstract:

以块体SiO2大孔材料为基质,甲基丙烯酸缩水甘油酯(GMA)和甲基丙烯酸羟乙酯(HEMA)为功能单体,通过原位聚合和溶剂蒸发制备P(GMA-co-HEMA)/SiO2大孔复合材料,用SEM、EDS、BET、FTIR和TG-DTA对样品进行表征,并将其用于固定褶皱假丝酵母脂肪酶(CRL)。结果表明:SiO2大孔材料很强的毛细管作用使共聚物均匀地涂敷在其孔壁上,形成P(GMA-co-HEMA)/SiO2复合纳米薄膜。共聚物的负载量和亲疏水性可分别通过改变单体浓度和体积比进行调控,当单体体积浓度为10%、GMA和HEMA的体积比为9:1时大孔复合材料固定化脂肪酶比酶活达到最高,为3886.9 U/g,与底物反应重复操作8批次后剩余酶活率为68.7%。 A P(GMA-co-HEMA)/SiO2 macroporous composite was synthesized by in-situ polymerization followed by solvent evaporation via a large-sized macroporous SiO2 material as substrate and glycidyl methacrylate(GMA), 2-hydroxyethyl methacrylate(HEMA) as the functional monomers. Samples were characterized by SEM, EDS, BET, FTIR and TG-DTA. The P(GMA-co-HEMA)/SiO2 macroporous composite was employed as support for the immobilization of lipase from Candida rugose (CRL). The results show that the strong capillarity effect of the macroporous SiO2 material makes the copolymer coating on its pore wall uniformly, forming the P(GMA-co-HEMA)/SiO2 composite nano-film. The loading amount and the hydrophilicity of the copolymer can be adjusted by changing the concentration of the monomers and the volume ratio of the monomers, respectively. When the volume concentration of monomers is 10% and the volume ratio of GMA to HEMA is 9∶1, the immobilized lipase reaches its highest specific activity of 3 886.9 U/g and remains 68.7% of its initial activity after 8 consecutive batches of reaction with the substrate. 浙江省公益项目(2014C31130);浙江省自然科学基金(LY12B01004);宁波大学王宽诚幸福基金(XKL072)

References

[1]  NAM Y S, YOON J J, PARK T G. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive[J]. Journal of Biomedical Materials Research, 2000, 53(1):1-7.
[2]  BALGIS R, SAGO S, ANILKUMAR G M, et al. Selforganized macroporous carbon structure derived from phenolic resin via spray pyrolysis for high-performance electrocatalyst[J]. ACS Applied Materials & Interfaces, 2013, 5(22):11944-11950.
[3]  HOLLAND B T, BLANFORD C F, STEIN A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids[J]. Science, 1998, 281(5376):538-540.
[4]  YANG L, GE D, DING Y, et al. Studies on late formation of 3D ordered macroporous materials through colloidal crystal templates[J]. Journal of Porous Materials, 2012, 19(6):1023-1026.
[5]  YANG S, ZENG L, WANG Y, et al. Facile approach to glycidyl methacrylate-based polyHIPE monoliths with high epoxy-group content[J]. Colloid and Polymer Science, 2014, 292(10):2563-2570.
[6]  BARBETTA A, DENTINI M, LEANDRI L, et al. Synthesis and characterization of porous glycidyl methacrylate-divinylbenzene monoliths using the high internal phase emulsion approach[J]. Reactive and Functional Polymers, 2009, 69(9):724-736.
[7]  SCHRODEN R C, BLANFORD C F, MELDE B J, et al. Direct synthesis of ordered macroporous silica materials functionalized with polyoxometalate clusters[J]. Chemistry of Materials, 2001, 13(3):1074-1081.
[8]  WELZEL P B, GRIMMER M, RENNEBERG C, et al. Macroporous starPEG-heparin cryogels[J]. Biomacromolecules, 2012, 13(8):2349-2358.
[9]  OUYANG H, DE LOUISE L A, MILLER B L, et al. Label free quantitative detection of protein using macroporous silicon photonic bandgap biosensors[J]. Analytical Chemistry, 2007, 79(4):1502-1506.
[10]  JANSHOFF A, DANCIL K P S, STEINEM C, et al. Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing[J]. Journal of the American Chemical Society, 1998, 120(46):12108-12116.
[11]  LIU T, LIU Y, WANG X, et al. Improving catalytic performance of Burkholderia cepacia lipase immobilized on macroporous resin NKA[J]. Journal of Molecular Catalysis B:Enzymatic, 2011, 71(1):45-50.
[12]  ZHANG R, ZHANG L. Preparation of 3-dimentional skeletal polymer via control of reaction-induced phase separation in epoxy/poly (ethylene glycol) blends[J]. Polymer Bulletin, 2008, 61(6):671-677.
[13]  ZHANG R F, LONG N B. Preparation of 3D SiO2 ultrathin structure via templating method[J]. Thin Solid Films, 2009, 517(24):6677-6680.
[14]  沈维云. 磁性二氧化硅载体的合成、表征及对酶的固定化[D]. 武汉:华中科技大学, 2007. SHEN W Y. Preparation and characterization of magnetic silica support and application in immobilization of enzyme[D]. Wuhan:Huazhong University of Science and Technology, 2007(in Chinese).
[15]  BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1):248-254.
[16]  KILCAWLEY K N, WILKINSON M G, FOX P F. Determination of key enzyme activities in commercial peptidase and lipase preparations from microbial or animal sources[J]. Enzyme and Microbial Technology, 2002, 31(3):310-320.
[17]  龙能兵, 王秋景, 张瑞丰. 大尺寸大孔径C/SiO2 复合导电材料的制备[J]. 复合材料学报, 2011, 28(5):119-125. LONG N B, WANG Q J, ZHANG R F. Preparation of large-sized C/SiO2 macroporous conducting materials[J]. Acta Materiae Compositae Sinica, 2011, 28(5):119-125(in Chinese).
[18]  LIU X, LI Y, ZHU W, et al. Building on size controllable hollow nanospheres with superparamagnetism derived from solid Fe3O4 nanospheres:Preparation, characterization and application for lipase immobilization[J]. CrystEngComm, 2013, 15(24):4937-4947.
[19]  LEI Z, JIANG Q. Synthesis and properties of immobilized pectinase onto the macroporous polyacrylamide microspheres[J]. Journal of Agricultural and Food Chemistry, 2011, 59(6):2592-2599.
[20]  黄增芳, 瞿晓岳, 陈正. SiO2-PMMA-GMA亚微米复合粒子的制备及其对环氧树脂的改性[J]. 复合材料学报, 2014, 31(5):1148-1153. HUANG Z F, QU X Y, CHEN Z. Preparation of submicron SiO2-PMMA-GMA composite particles and their modification for epoxy[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1148-1153(in Chinese).
[21]  ESMAEILNEJAD-AHRANJANI P, KAZEMEINI M, SINGH G, et al. Amine-functionalized magnetic nanocomposite particles for efficient immobilization of lipase:Effects of functional molecule size on properties of the immobilized lipase[J]. Macromolecular Research, 2015, 5:33313-33327.
[22]  VALTCHEV V. Preparation of regular macroporous structures built of intergrown silicalite-1 nanocrystals[J]. Journal of Materials Chemistry, 2002, 12(6):1914-1918.
[23]  ADLERCREUTZ P. Immobilisation and application of lipases in organic media[J]. Chemical Society Reviews, 2013, 42(15):6406-6436.
[24]  SUH J. Synthetic artificial peptidases and nucleases using macromolecular catalytic systems[J]. Accounts of Chemical Research, 2003, 36(7):562-570.
[25]  TSUJINO I, AKO J, HONDA Y, et al. Drug delivery via nano-, micro and macroporous coronary stent surfaces[J]. Expert Opinion on Drug Deliver, 2007, 4(3):287-295.
[26]  HERNANDEZ K, FERNANDEZ-LAFUENTE R. Control of prtein immobilization:Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance[J]. Enzyme and Microbial Technology, 2011, 48(2):107-122.
[27]  曲伟光, 魏荣卿, 何冰芳, 等. 亲水梳状环氧聚合物载体柔性固定化脂肪酶[J]. 催化学报, 2011, 32(12):1869-1874. QU W G, WEI R Q, HE B F, et al. Flexible immobilization of lipase on hydrophilic and comblike polymer support containing epoxy group[J]. Chinese Journal of Catalysis, 2011, 32(12):1869-1874(in Chinese).
[28]  SPOWAGE A C, SHACKLOCK A P, MALCOLM A A, et al. Development of characterisation methodologies for macroporous materials[J]. Journal of Porous Materials, 2006, 13(3-4):431-438.
[29]  陈宗宗, 张瑞丰. 基于Polymer-SC/SiO2多层结构大孔电极锂硫离子电池的制备与性能[J]. 复合材料学报, 2014, 31(2):525-531. CHEN Z Z, ZHANG R F. Preparation and performance of lithium-sulfur batteries based on multilayer structure in polymer-S-C/SiO2 macroporous electrodes[J]. Acta Materiae Compositae Sinica, 2014, 31(2):525-531(in Chinese).
[30]  WHITE R A, WEBER J N, WHITE E W. Replamineform a new process for preparing porous ceramic, metal, and polymer prosthetic materials[J]. Science, 1972,176(4037):922-924.
[31]  SANDI? Z P, NASTASOVI? A B, JOVI?-JOVI A?I? N P, et al. Sorption of textile dye from aqueous solution by macroporous amino-functionalized copolymer[J]. Journal of Applied Polymer Science, 2011, 121(1):234-242.
[32]  PATEL S R, YAP M G S, WANG D I C. Immobilizationof l-lactate dehydrogenase on magnetic nanoclusters for chiral synthesis of pharmaceutical com pounds[J]. Bio-chemical Engineering Journal, 2009, 48(1):13-21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133