|
- 2016
掺杂纳米SnO2-Al2O3/Cu新型电触头复合材料的制备及耐磨性能
|
Abstract:
为满足低压电器对于高品质电触头材料的迫切需求,同时保护稀缺资源、降低电触头成本,采用粉末冶金工艺制备了掺杂纳米SnO2-Al2O3/Cu新型电触头复合材料,并对其电导率、硬度及耐磨性能进行了研究。结果表明:复烧与冷变形工艺均可显著提高复合材料的烧结质量、密度、电导率与硬度。随着纳米Al2O3及掺杂纳米SnO2颗粒的总含量增加,掺杂纳米SnO2-Al2O3/Cu电触头复合材料的硬度与耐磨性能表现出了相同的变化规律,即先升高后降低。当纳米Al2O3及掺杂纳米SnO2颗粒的总含量为0.80wt%时,复合材料的硬度与耐磨性能均达到最优;而当纳米Al2O3及掺杂纳米SnO2颗粒的总含量保持0.80wt%不变时,随纳米Al2O3颗粒的含量增加,掺杂纳米SnO2-Al2O3/Cu电触头复合材料的硬度与耐磨性能改善;当掺杂纳米SnO2颗粒的含量为0时,复合材料的耐磨性能达到了最优。因此较之掺杂纳米SnO2颗粒,纳米Al2O3颗粒对掺杂纳米SnO2-Al2O3/Cu电触头复合材料的耐磨性能有更显著的提高作用。 In order to meet the urgent needs of low-voltage electrical equipment for high quality electrical contact materials, and to protect the scarce resources and reduce the cost of electrical contact at the same time, doped nano-SnO2-Al2O3/Cu novel electrical contact composites were fabricated by using powder metallurgy technique. The electrical conductivity, hardness and wear resistances of them were also investigated. The results show that both of re-sintering and cold deformation processes can improve the sintering quality, density, electrical conductivity as well as hardness of the composites significantly. With the increasing for total content of nano-Al2O3 and doped nano-SnO2 particles, hardness and wear resistances of the doped nano-SnO2-Al2O3/Cu electrical contact composites show the same change rule, which increases firstly and then decreases. When the total content of nano-Al2O3 and doped nano-SnO2 particles is 0.80wt%, both of the hardness and wear resistances of the composites reach the optimum. While when the total content of nano-Al2O3 and doped nano-SnO2 particles remains unchanged at 0.80wt%, with the content of nano-Al2O3 particles increasing, the hardness and wear resistances of the doped nano-SnO2-Al2O3/Cu electrical contact composites enhance. When the content of doped nano-SnO2 particles is 0, the wear resistance of the composite reaches the optimum. Therefore, compared with doped nano-SnO2 particles, the nano-Al2O3 particles have a more significant improving effect on the wear resistance of the doped nano-SnO2-Al2O3/Cu electrical contact composites. 中国博士后科学基金(2014M551008);河北省自然科学基金(2014Z02184)
[1] | 崔浩, 谢明, 杨有才, 等. 铜基新型电接触材料电性能分析[J]. 电工材料, 2009(3): 8-11. CUI H, XIE M, YANG Y C, et al. Analysis of electrical properties of copper-based new electrical contact material[J]. Electrical Engineering Materials, 2009(3): 8-11(in Chinese). |
[2] | SHABANA Y M, KARIHALOO B L, ZHU H X, et al. Influence of processing defects on the measured properties of Cu-Al2O3 composites: A forensic investigation[J]. Composites Part A: Applied Science and Manufacturing, 2013, 46: 140-146. |
[3] | 杨志强, 刘勇, 田保红, 等. TiC/Cu-Al2O3复合材料动态再结晶临界条件[J]. 复合材料学报, 2014, 31(4): 963-969. YANG Z Q, LIU Y, TIAN B H, et al. Critical conditions of dynamic recrystlliazation of TiC/Cu-Al2O3 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4): 963-969(in Chinese). |
[4] | 杨志强, 刘勇, 田保红, 等. TiC (30vol%)/Cu-Al2O3复合材料热变形及动态再结晶[J]. 复合材料学报, 2015, 32(1): 117-124. YANG Z Q, LIU Y, TIAN B H, et al. Hot deformation and dynamic recrystallization of TiC (30vol%)/Cu-Al2O3 composite[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 117-124(in Chinese). |
[5] | 赵翔, 郝俊杰, 于潇, 等. Al2O3颗粒镀铜对铜基粉末冶金摩擦材料Al2O3-Fe-Sn-C/Cu摩擦磨损性能的影响[J]. 复合材料学报, 2015, 32(2): 451-457. ZHAO X, HAO J J, YU X, et al. Effects of Cu-plating for Al2O3 particles on friction and wear properties of Cu-based powder metallurgy friction material Al2O3-Fe-Sn-C/Cu[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 451-457(in Chinese). |
[6] | SWINGLER J, SUMPTION A. Arc erosion of AgSnO2 electrical contacts at different stages of a break operation[J]. Rare Metal, 2010, 29(3): 248-254. |
[7] | ZHENG J, LI S L, DOU F Q, et al. Preparation and microstructure characterization of a nano-sized Ti4C-doped AgSnO2 electrical contact material[J]. Rare Metal, 2009, 28(1): 19-23. |
[8] | 施利毅, 张怡张, 潘琪, 等. 纳米SnO2/TiO2复合颗粒形态结构表征[J]. 功能材料, 2001, 32(5): 532-533. SHI L Y, ZHANG Y Z, PAN Q, et al. Characterization of the morphological structure of SnO2/TiO2 composite powders[J]. Journal of Functional Materials, 2001, 32(5): 532-533(in Chinese). |
[9] | WANG Q Z, LU D M, CUI C X, et al. Fabrication of doped SnO2 powder used for Cu matrix electrical contact[J]. Rare Metal Materials and Engineering, 2014, 43(8): 1979-1982. |
[10] | WANG J H, CUI C X, WANG Q Z, et al. Manufacturing process and properties of ZnO strengthened copper-based composite material[J]. Rare Metal Materials and Engineering, 2009, 38: 460-463. |
[11] | WANG Q Z, CUI C X, LU D M, et al, Fabrication and properties of a novel ZnO-Cu composite[J]. Journal of Materials Processing Technology, 2010, 210(3): 497-503. |
[12] | 刘德宝, 崔春翔. TiN颗粒增强铜基复合材料的制备及性能研究[J]. 稀有金属, 2004, 28(5): 856-861. LIU D B, CUI C X. Fabrication and properties of TiN particle-reinforced copper matrix composites[J]. Chinese Journal of Rare Metals, 2004, 28(5): 856-861(in Chinese). |
[13] | 夏承东, 田保红, 刘平, 等. 冷变形对简化工艺制备Cu-Al2O3 复合材料组织和性能的影响[J]. 铸造技术, 2007, 28(3): 312-315. XIA C D, TIAN B H, LIU P, et al. Effect of cold deformation on structure and properties of Cu-Al2O3 composite prepared by simplified technique[J]. Foundry Technology, 2007, 28(3): 312-315(in Chinese). |
[14] | REN F Z, ZHI A J, ZHANG D W, et al. Preparation of Cu-Al2O3 bulk nano-composites by combining Cu-Al alloy sheets internal oxidation with hot extrusion[J]. Journal of Alloys and Compounds, 2015, 633(5): 323-328. |
[15] | ZAWRAH M F, ZAYED H A, ESSAWY R A, et al. Preparation by mechanical alloying, characterization and sintering of Cu-20wt.% Al2O3 nanocomposites[J]. Materials & Design, 2013, 46: 485-490. |
[16] | 刘想梅. 纳米掺杂AgSnO2电接触材料的研究[D]. 天津: 天津大学, 2003. LIU X M. The study on nano-doped Ag SnO2 contact material[D]. Tianjin: Tianjin University, 2003(in Chinese). |
[17] | CHANDRASEKHAR S B, SARMA S S, RAMAKRISHNA M, et al. Microstructure and properties of hot extruded Cu-1wt% Al2O3 nano-composites synthesized by various techniques[J]. Materials Science and Engineering: A, 2014, 591: 46-53. |