|
- 2016
模压成型的杨木纤维/高密度聚乙烯复合材料蠕变性能和蠕变模型
|
Abstract:
采用长为850~2 000 μm的杨木纤维(PWF)增强高密度聚乙烯(HDPE), 利用模压成型法制备了PWF/HDPE复合材料, 对其进行了弯曲力学性能测试、无缺口简支梁冲击强度测试、24 h弯曲蠕变-24 h回复性能测试、1 000 h蠕变性能测试及蠕变后残余弯曲力学性能测试, 并利用两参数指数模型、Findley指数模型及四元件Burgers模型拟合蠕变曲线。结果表明: PWF/HDPE复合材料的弯曲强度为21.14 MPa, 弹性模量为2.31 GPa, 无缺口冲击强度为6.77 kJ/m2;24 h形变为0.803 mm, 24 h回复率为78.46%, 蠕变后弯曲强度下降了6.45%, 而弹性模量增加了8.95%;1 000 h形变为0.809 mm, 蠕变后弯曲强度保留了72.35%, 弹性模量增加了10.67%;3种模型中, 四元件Burgers模型拟合PWF/HDPE复合材料蠕变性能的效果较好。 Poplar wood fibers (PWF) of 850-2 000 μm reinforced high-density polyethylene (HDPE) composites were prepared by compression molding process. The flexural mechanical property test, un-notched beam impact strength test, 24 h flexural creep-24 h recovery property test, 1 000 h creep property test and residual flexural mechanical performance test after creep of PWF/HDPE composites were studied. And two-parameter exponential model, Findley's exponential model and four-element Burgers model were used to fit creep curve. The results show that the flexural strength, elastic modulus and un-notched impact strength of PWF/HDPE composites are 21.14 MPa, 2.31 GPa and 6.77 kJ/m2, respectively. The 24 h deformation is 0.803 mm, and 24 h recovery rate is 78.46%. After creep, flexural strength decreases by 6.45%, but the elastic modulus increases by 8.95%. The 1 000 h deformation is 0.809 mm, and the flexural strength of the creep is 72.35% of the original value, and the elastic modulus increases by 10.67%. Among the three models, four-element Burgers model successfully simulates with the creep properties of PWF/HDPE composites. 国家自然科学基金(31460171);贵州省科学技术基金(黔科合J字[2015]2075号)
[1] | 曹岩. 纤维尺寸及分布对WPCs力学性能的影响[D]. 哈尔滨: 东北林业大学, 2013. CAO Y. Effect of fiber size and distribution on the mechanical properties of WPCs[D]. Harbin: Northeast Forestry University, 2013 (in Chinese). |
[2] | 王春红, 任子龙, 李珊, 等. 苎麻织物表面改性对其增强热固性聚乳酸复合材料力学及阻燃性能的影响[J]. 复合材料学报, 2015, 32(2): 444-449. WANG C H, REN Z L, LI S, et al. Effects of surface modification on properties of mechanical and flame retardant of ramie fabrics reinforced thermosetting polylactic acid composites[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 444-449 (in Chinese). |
[3] | 王伟宏, 王晶晶, 黄海兵, 等. 纤维粒径对木塑复合材料抗老化性能的影响[J]. 高分子材料科学与工程, 2014, 30(5): 92-97. WANG W H, WANG J J, HUANG H B, et al. Effects of wood fiber size on properties of wood fiber/HDPE composites after aging[J]. Polymer Materials Science and Engineering, 2014, 30(5): 92-97 (in Chinese). |
[4] | SAIN M M, BALATINECZ J, LAW S. Creep fatigue in engineered wood fiber and plastic compositions[J]. Journal of Applied Polymer Science, 2000, 77(2): 260-268. |
[5] | PULNGERN T, PADYENCHEAN C, ROSARPITAK V, et al. Flexural and creep strengthening for wood/PVC composite members using flat bar strips[J]. Materials & Design, 2011, 32(6): 3137-3146. |
[6] | 周吓星, 李大纲, 吴正元. 环境因子对塑木地板蠕变性能影响研究[J]. 新建筑材料, 2009, 4: 81-84. ZHOU X X, Li D G, WU Z Y. Study on effect of environment factor upon creep behavior of wood-plastic composite deck board[J]. New Building Materials, 2009, 4: 81-84 (in Chinese). |
[7] | 蒋永涛, 李大纲, 吴正元, 等. 稻壳/HDPE木塑复合材料蠕变性能的研究[J]. 包装工程, 2008, 29(8): 4-6. JIANG Y T, LI D G, WU Z Y, et al. Study of the creep behavior of rice husk/high density polyethylene composites[J]. Packaging Engineering, 2008, 29(8): 4-6 (in Chinese). |
[8] | CAO Y, WANG W H, WANG Q W, et al. Application of mechanical models to flax fiber/wood fiber/plastic composites[J]. Bioresources, 2013, 8(3): 3276-3288. |
[9] | CAO Y, WANG W, WANG Q. Application of mechanical model for natural fibre reinforced polymer composites[J]. Materials Research Innovations, 2014, 18(2): 354-357. |
[10] | 黄海兵. 纤维大小对生物质纤维/塑料复合材料蠕变性能的影响[D]. 哈尔滨: 东北林业大学, 2012. HUANG H B. Effect of wood fiber size on the creep of wood fiber-plastic composites[D]. Harbin: Northeast Forestry University, 2012 (in Chinese). |
[11] | American Society of Testing Materials International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM 790—03[S]. West Conshohocken: ASTM International, 2009. |
[12] | 中国国家标准化管理委员会. 塑料简支梁冲击性能测定I: 非仪器化冲击试验: GB/T 1043.1—2008[S]. 北京: 中国标准出版社, 2008. Standardization Administration of the People's Republic of China. Plasics—Determination of charpy impact properties I: Non-instrumented impact test: GB/T 1043.1—2008[S]. Beijing: Standard Press of China, 2008 (in Chinese). |
[13] | American Society of Testing Materials International. Standard test methods for tensile, compressive, and flexural creep and creep-rupture of plastics: ASTM 2990—09[S]. West Conshohocken: ASTM International, 2009. |
[14] | ROWELL R M. Challenges in biomass-thermoplastic composites[J]. Journal of Polymers and the Environment, 2007, 15(4): 229-235. |
[15] | 王春红, 刘胜凯. 碱处理对竹纤维及竹纤维增强聚丙烯复合材料性能的影响[J]. 复合材料学报, 2015, 32(6): 683-690. WANG C H, LIU S K. Effects of alkali treatment properties of bamboo fiber and bamboo fiber reinforced polypropylene composites[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 683-690 (in Chinese). |