全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

先驱体浸渍-裂解SiC界面改性涂层对气相渗硅3D-Cf/SiC复合材料力学性能的影响
Effects of precursor infiltration-pyrolysis SiC interphase modified coating on mechanical properties of 3D-Cf/SiC composites prepared by gaseous silicon infiltration process

DOI: 10.13801/j.cnki.fhclxb.20151228.002

Keywords: 先驱体浸渍-裂解,SiC,界面改性,气相渗硅,Cf/SiC
precursor infiltration-pyrolysis
,SiC,interphase modified,gaseous silicon infiltration,Cf/SiC

Full-Text   Cite this paper   Add to My Lib

Abstract:

界面改性涂层对调节复合材料的力学性能起到重要作用。特别是在气相渗硅(GSI)制备Cf/SiC复合材料时, 合适的界面改性涂层一方面保护C纤维不受Si反应侵蚀, 另一方面调节C纤维和SiC基体的界面结合状况。通过在3D-C纤维预制件中制备先驱体浸渍-裂解(PIP)SiC涂层来进行界面改性, 研究了PIP-SiC涂层对GSI Cf/SiC复合材料力学性能的影响。结果表明:无涂层改性的GSI Cf/SiC复合材料力学性能较差, 呈现脆性断裂特征, 其弯曲强度、弯曲模量和断裂韧性分别为87.6 MPa、56.9 GPa和2.1 MPa·m1/2。具有PIP-SiC界面改性涂层的Cf/SiC复合材料力学性能得到改善, PIP-SiC涂层改性后, GSI Cf/SiC复合材料的弯曲强度、弯曲模量和断裂韧性随着PIP-SiC周期数的增加而降低, PIP-SiC为1个周期制备的GSI Cf/SiC复合材料的力学性能最高, 其弯曲强度、弯曲模量、断裂韧性分别为185.2 MPa、91.1 GPa和5.5 MPa·m1/2。PIP-SiC界面改性涂层的作用机制主要体现在载荷传递和"阻挡"Si的侵蚀2个方面。 The interphase modified coating plays a vital role in adjusting the mechanical properties of composites, in particular for those Cf/SiC composites prepared from the gaseous silicon infiltration (GSI) process. The ideal interphase modified coating should not only prevent the etching of C fiber by Si vapor, but also render a good interface bonding between C fiber and SiC matrix. With SiC coatings from the precursor infiltration-pyrolysis (PIP) route as the interphase modified coating in 3D-C fiber preform, we discuss the effects of PIP-SiC coating on mechanical properties of Cf/SiC composites made from GSI. The results show that, without coating modification, the GSI Cf/SiC composites have poor mechanical properties and show brittle fracture characteristic, with the flexure strength, flexure modulus and fracture toughness 87.6 MPa, 56.9 GPa and 2.1 MPa·m1/2, respectively. Those composites with PIP-SiC interphase modified coating exhibit better mechanical properties, with PIP-SiC coating modification, with the increase of the PIP-SiC cycles, flexure strength, flexure modulus and fracture toughness of GSI Cf/SiC composites decrease, in particular those with the PIP-SiC coatings after one cycle, with the flexure strength, flexure modulus and fracture toughness 185.2 MPa, 91.1 GPa and 5.5 MPa·m1/2, respectively. The improvement effects from the PIP-SiC interphase modified coating are attributed to the transfer loading and prevention of etching by Si. 国家自然科学基金(51102282);国防科学技术大学科研计划(JC14-01-01)

References

[1]  NASLAIN R. SiC-matrix composites: Nonbrittle ceramics for thermo-structural application[J]. International Journal of Applied Ceramic Technology, 2005, 2(2): 75-84.
[2]  王鸣, 董志国, 张晓越, 等. 连续纤维增强碳化硅陶瓷基复合材料在航空发动机上的应用[J]. 航空制造工程, 2014(6): 10-13. WANG M, DONG Z G, ZHANG X Y, et al. Application of continuous fiber reinforced ceramic matrix composites in aeroengine[J]. Aeronautical Manufacturing Technology, 2014(6): 10-13 (in Chinese).
[3]  张长瑞, 郝元恺. 陶瓷基复合材料-原理、工艺、性能与设计[M]. 长沙: 国防科技大学出版社, 2001: 307-308. ZHANG C R, HAO Y K. Ceramic matrix composites-principle, technology, property and design[M]. Changsha: National University of Defense Technology Press, 2001: 307-308 (in Chinese).
[4]  ZHOU C C, ZHANG C R, HU H F, et al. Preparation of 3D-Cf/SiC composites at low temperatures[J]. Materials Science and Engineering: A, 2008, 488: 569-572.
[5]  MAURICE F C, STUART H. Comparison of two processes for manufacturing ceramic matrix composites from organometallic precursors[J]. Journal of European Ceramic Society, 1999, 19: 285-291.
[6]  王静, 曹英斌, 刘荣军, 等. C/C-SiC 复合材料的反应烧结法制备及应用进展[J]. 材料导报, 2013, 27(3): 29-33. WANG J, CAO Y B, LIU R J, et al. Advances in C/C-SiC composites: Preparation by reaction bonding technique and applications[J]. Materials Review, 2013, 27(3): 29-33 (in Chinese).
[7]  刘建功, 殷小玮, 成来飞, 等. 液硅渗透法制备Si-B-C改性C/C-SiC复合材料[J]. 复合材料学报, 2012, 29(6): 78-82. LIU J G, YIN X W, CHENG L F, et al. Fabrication of Si-B-C modified C/C-SiC composite by liquid silicon infiltration[J]. Acta Materiae Compositae Sinica, 2012, 29(6): 78-82 (in Chinese).
[8]  WANG H L, ZHOU X G, Yu J S, et al. Microstructure, mechanical properties and reaction mechanism of KD-1 SiCf/SiC composites fabricated by chemical vapor infiltration and vapor silicon infiltration[J]. Materials Science and Engineering: A, 2011, 528: 2441-2445.
[9]  QIAN J M, JIN Z H, WANG X W. Porous SiC ceramics fabricated by reactive infiltration of gase-ous silicon into charcoal[J]. Ceramics International, 2004, 30: 947-951.
[10]  YANG H Y, LIU R J, CAO Y B, et al. Effect of PyC content in C/C greenbody on structure and properties of 3D-C/SiC composite fabricated by gas silicon infiltration[J]. Applied Mechanics and Materials, 2011, 71-78: 4994-4998.
[11]  CAO X Y, YIN X W, FAN X M, et al. Effect of PyC interphase thickness on mechanical behaviors of SiBC matrix modified C/SiC composites fabricated by reactive infiltration[J]. Carbon, 2014, 77: 886-895.
[12]  KRENKEL W, BERNDT F. C/C-SiC composites for space applications and advanced friction systems[J]. Materials Science and Engineering: A, 2005, 412(1-2): 177-181.
[13]  何柏林, 孙佳. 碳纤维增强碳化硅陶瓷基复合材料的研究进展及应用[J]. 硅酸盐通报, 2009, 28(6): 1198-1201. HE B L, SUN J. Progress and application of carbon fibers reinforced silicon carbide ceramic matrix composite[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(6): 1198-1201 (in Chinese).
[14]  周清, 董绍明, 丁玉生, 等. 界面涂层对气相渗硅Cf/SiC复合材料力学性能的影响[J]. 无机材料学报, 2007, 22(6): 1142-1146. ZHOU Q, DONG S M, DING Y S, et al. Effect of interphase on mechanical properties of Cf/SiC composites fabricated by vapor silicon infiltration[J]. Journal of Inorganic Materials, 2007, 22(6): 1142-1146 (in Chinese).
[15]  NASLAIN R. Fibre-matrix interphases and interfaces in ceram matrix composites processed by CVI[J]. Composite Interfaces, 1993, 1(3): 253-286.
[16]  BYUNG J O, YOUNG J L, DOO J C. Fabrication of carbon/silicon carbide composites by isothermal chemical vapor infiltration using the in situ whisker-growing and matrix-filling process[J]. Journal of the American Ceramic Society, 2001, 84(1): 245-247.
[17]  LIU S H, ZHANG L T, YIN X W. Microstructure and mechanical properties of SiC and carbon hybrid fiber reinforced SiC matrix composite[J]. International Journal of Applied Ceramic Technology, 2011, 8(2): 308-316.
[18]  WILLAM B H. Making ceramic composites by melt infiltration[J]. American Ceramic Society Bulletin, 1994, 73(4): 56-62.
[19]  SHOBU K, TANI E, KISHI K, et al. SiC-intermetallics composites fabricated by melt infiltration[J]. Key Engineering Materials, 1999, 159-160: 325-330.
[20]  KRENKEL W, HEIDENREICH B, RENZ R. C/C-SiC composites for advanced friction systems[J]. Advanced Engineering Materials, 2002, 4(7): 427-436.
[21]  严春雷, 刘荣军, 张长瑞, 等. 气相渗硅制备C/SiC复合材料[J]. 航空制造工程, 2014, 450(6): 122-128. YAN C L, LIU R J, ZHANG C R, et al. Preparation of C/SiC composites by gaseous Si infiltration[J]. Aeronautical Manufacturing Technology, 2014, 450(6): 122-128 (in Chinese).
[22]  ZHOU Q, DONG S M, DING Y S, et al. Three-dimensional carbon fiber-reinforced silicon car-bide matrix composites by vapor silicon infiltration[J]. Ceramics International, 2009, 35: 2161-2169.
[23]  MANISH P, KUMAR S. High temperature C/C-SiC composite by liquid silicon infiltration[J]. Bulletin of Materials Science, 2012, 35(1): 63-73.
[24]  马青松, 刘海韬, 潘余, 等. C/SiC 复合材料在超燃冲压发动机中的应用研究进展[J]. 无机材料学报, 2013, 28(3): 247-255. MA Q S, LIU H T, PAN Y, et al. Research progress on the application of C/SiC composites in scramjet[J]. Journal of Inorganic Materials, 2013, 28(3): 247-255 (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133