全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

氧化钒-氧化石墨烯复合薄膜的制备及其光电特性
Preparation and optoelectronic properties of vanadium oxide-graphene oxide composite films

DOI: 10.13801/j.cnki.fhclxb.20170911.003

Keywords: 红外探测器,氧化钒-氧化石墨烯,复合薄膜,热敏电阻,光学性能,电学性能
infrared detectors
,vanadium oxide-graphene oxide,composite films,thermistor materials,optical properties,electrical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于溶胶凝胶法,采用旋涂和喷涂相结合的工艺,制备了氧化钒(VOx,1≤x≤2.5)-氧化石墨烯(GO)复合薄膜。利用SEM、XRD、椭偏仪、紫外可见分光光度计、FTIR及高阻仪对所制薄膜的形貌、晶相、光学及电学性能进行了系统的表征测试。结果表明,加入GO之后,VOx-GO复合薄膜的电阻率由108.78 Ω·cm下降至68.64 Ω·cm,而薄膜的电阻温度系数(TCR)则由-1.98% K-1提高至-2.60% K-1。此外,VOx-GO复合薄膜还具有更高的光吸收率和工作稳定性。说明GO的加入增强了VOx薄膜作为非制冷红外探测器热敏材料的综合性能。本研究为探索基于VOx的新型红外热敏材料提供了参考,同时也对非制冷红外探测器的发展有促进作用。 Vanadium oxide (VOx, 1 ≤ x ≤ 2.5)-graphene oxide (GO) composite films were prepared by the combination of spin-coating of VOx sol-gel and spray-coating of GO dispersion.The physical morphologies, crystallinities, optical and electrical properties of the as-prepared films were systematically characterized by SEM, XRD, ellipsometry, UV-visible spectrometer, FTIR and high resistance meter. The results indicate that the resistivity of the composite film decreases from 108.78 Ω·cm for the pristine VOx film to 68.64 Ω·cm after GO addition, while the temperature coefficient of resistance(TCR) increases from -1.98%K-1 to -2.60%K-1. In addition, VOx-GO composite film exhibits a higher light absorption. These suggest that the GO addition can significantly improve the performance of VOx films as thermistor materials. The results present in this work not only provide valuable information for the exploration of novel VOx-based infrared thermistor materials, but also promote the development of uncooled infrared detectors. 国家自然科学基金(61377063;61071032;61421002)

References

[1]  BRINKER C J, SCHERER G W. Sol-gel science:The physics and chemistry of sol-gel processing[M]. New York:Academic Press, 1990.
[2]  SANCHEZ C, HENRY M, GRENET J C, et al. Free and bound polarons in vanadium pentoxide[J]. Journal of Physics C:Solid State Physics, 1982, 15(35):7133-7141.
[3]  GOODENOUGH J B. The two components of the crystallographic transition in VO2[J]. Journal of Solid State Chemistry, 1971, 3(4):490-500.
[4]  KIM H, ABDALA A A, MACOSKO C W. Graphene/polymer nano composites[J]. Macromolecules, 2010, 43(16):6515-6530.
[5]  AL M L, SHIN K, KALANTAR Z K, et al. Graphene/polyaniline nano composite for hydrogen sensing[J]. The Journal of Physical Chemistry C, 2010, 114(39):16168-16173.
[6]  JI Q, SHI L, ZHANG Q, et al. VOx effectively doping CVD-graphene for transparent conductive films[J]. Applied Surface Science, 2016, 387(8):51-57.
[7]  ZHANG X, SUN H, LI Z, et al. Synthesis and electrochromic characterization of vanadium pentoxide/graphene nanocomposite films[J]. Journal of the Electrochemical Society, 2013, 160(9):H587-H590.
[8]  JELLISON J G E, MODINE F A. Parameterization of the optical functions of amorphous materials in the interbandregion[J]. Applied Physics Letters, 1996, 69(3):371-373.
[9]  AMANS D, CALLARD S, GAGNAIRE A, et al. Ellipsometric study of silicon nanocrystal optical constants[J]. Journal of Applied Physics, 2003, 93(7):4173-4179.
[10]  HE Q, XU X D, GU Y, et al. Vanadium oxide-carbon nanotube composite films characterized by spectroscopic ellipsometry[J]. Journal of Physics D:Applied Physics, 2016, 49(40):405105.
[11]  RAMANA C V, HUSSAIN O M, UTHANNA S, et al. Influence of oxygen partial pressure on the optical properties of electron beam evaporated vanadium pentoxide thin films[J]. Optical Materials, 1998, 10(2):101-107.
[12]  SAMANO E C, MACHORRO R, SOTO G, et al. In situ ellipsometric characterization of SiNx films grown by laser ablation[J]. Journal of Applied Physics, 1998, 84(9):5296-5305.
[13]  BENMOUSSA M, IBNOUELGHAZI E, BENNOUNA A, et al. Structural, electrical and optical properties of sputtered vanadium pentoxide thin films[J]. Thin Solid Films, 1995, 265(1-2):22-28.
[14]  LIVAGE J. Vanadium pentoxide gels[J]. Chemistry of Materials, 1991, 3(4):578-593.
[15]  XU X D, SUN Z Q, FAN K, et al. Conversion of 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) from a simple optical material to a versatile optoelectronic material[J]. Scientific Reports, 2015, 5:12269.
[16]  BECKER L. Influence of IR sensor technology on the military and civil defense[C]//RAZEGHI M, BROWN G J. Quantum Sensing and Nano Photonic Devices Ⅲ. Los Angeles:Proceedings of SPIE, 2006:61270S1-61270S15.
[17]  熊宗龙, 杨坤涛, 张南洋生. 室内人体表面红外辐射探测模型[J]. 光学学报, 2009, 29(12):3379-3384. XIONG Z L, YANG K T, ZHANG N Y S. Detecting model of infrared radiation of human body indoors[J]. Acta Optica Sinica, 2009, 29(12):3379-3384 (in Chinese).
[18]  ROGALSKI A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3):136-154.
[19]  邢素霞, 张俊举, 常本康, 等. 非制冷红外热成像技术的发展与现状[J]. 红外与激光工程, 2004, 33(5):441-444. XING S X, ZHANG J J, CHANG B K, et al. Recent development and status of uncooled IR thermal imaging technology[J]. Infrared and Laser Engineering, 2004, 33(5):441-444 (in Chinese).
[20]  HAN Y H, CHOI I H, KANG H K, et al. Fabrication of vanadium oxide thin film with high-temperature coefficient of resistance using V2O5/V/V2O5 multi-layers for uncooled microbolometers[J]. Thin Solid Films, 2003, 425(1):260-264.
[21]  MALLMANN G. Mantle redox state and its effect on trace-element partitioning during basalt petrogenesis[D]. Canberra:Australian National University, 2008.
[22]  PARTLOW D P, GURKOVICH S R, RADFORD K C, et al. Switchable vanadium oxide films by a sol-gel process[J]. Journal of Applied Physics, 1991, 70(1):443-452.
[23]  DISLICH H, HUSSMANN E. Amorphous and crystalline dip coatings obtained from organometallic solutions:Procedures, chemical processes and products[J]. Thin Solid Films, 1981, 77(1-3):129-140.
[24]  李金华, 袁宁一, 谢太斌, 等. 超高温度系数 V0.97W0.03O2多晶薄膜的制备研究[J]. 物理学报, 2007, 56(3):1790-1795. LI JH, YUAN NY, XIE T B, et al. Prepapration of polycrystalline V0.97W0.03O2 thin films with ultra high TCR at room temperature[J]. Acta Physica Sinica, 2007, 56(3):1790-1795 (in Chinese).
[25]  温粤江, 许向东, 何琼, 等. 氧化钒-碳纳米管复合薄膜的制备及特性[J]. 光学学报, 2012, 32(5):297-302. WEN Y J, XU X D, HE Q, et al. Preparation and properties of vanadium oxide-carbon nanotube composite films[J]. Acta Optica Sinica, 2012, 32(5):297-302 (in Chinese).
[26]  HE Q, XU X D, WANG M, et al. Chemical structures and physical properties of vanadium oxide films modified by single-walled carbon nanotubes[J]. Physical Chemistry Chemical Physics, 2016, 18(3):1422-1428.
[27]  KOTOV N A. Materials science:Carbon sheet solutions[J]. Nature, 2006, 442(7100):254-255.
[28]  周宏, 朴明昕, 李芹, 等. 氧化石墨烯纳米片/环氧树脂复合材料的制备与性能[J]. 复合材料学报, 2015, 32(5):1309-1315. ZHOU H, PU M X, LI Q, et al. Preparation and properties of graphene oxide nanosheets/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1309-1315 (in Chinese).
[29]  李琛, 晏石林, 杨亚运, 等. 氧化石墨烯/呋喃树脂复合材料的制备及其性能[J]. 复合材料学报, 2017, 34(2):278-283. LI C, YAN S L, YANG Y Y, et al. Preparation and properties of graphene oxide/furan resin composites[J]. Acta Materiae Compositae Sinica, 2017, 34(2):278-283 (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133