全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

聚合物基复合材料有效蠕变响应与单轴拉伸行为的细观力学模拟
Effective creep response and uniaxial tension behavior of polymer matrix composites simulated by mesomechanics

DOI: 10.13801/j.cnki.fhclxb.20160317.005

Keywords: 有效蠕变响应,宏观应力-应变行为,线黏弹性,聚合物基复合材料,细观力学,变分渐近法
effective creep response
,macroscopic stress-strain behavior,linear viscoelastic,polymer matrix composite,micromechanics,variational asymptotic method

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于变分渐近均匀化理论框架建立表征线性黏弹性聚合物基复合材料有效蠕变响应和宏观应力-应变行为的细观力学模型。从线性黏弹性聚合物基复合材料本构方程中构建能量泛函变分表达式出发,采用变分渐近法求解线性黏弹性聚合物基复合材料的有效蠕变柔度系数,并以此为基础计算聚合物基复合材料的时变和单轴拉伸行为。通过算例验证了构建模型的适用性和准确性。由于所有计算均在时间域内完成,不再需要传统线黏弹性复合材料使用的Laplace转换和反演,计算效率大为提高。 A micromechanics model was developed to characterize the effective creep response and macroscopic stress-strain behavior of linear viscoelastic polymer matrix composites based on variational asymptotic homogenization theory framework. Stated from the energy functional variational expression derived from the constitutive equations of the linear viscoelastic polymer matrix composites, the effective creep compliance coefficients of the linear viscoelastic polymer matrix composites were solved by using the variational asymptotic method. On this basis, the time-dependent and uniaxial tensile behavior of polymer matrix composites were calculated. The applicability and accuracy of the model were verified by numerical examples. Since all calculations were accomplished in the time domain, the Laplace transform and inversion commonly used for linearly viscoelastic composites are not needed in this theory, and the computational efficiency is greatly improved. 国家自然科学基金(11272363);中央高校基本科研业务费专项资金(106112014CDJZR200017);重庆市自然科学基金(cstc2016jcyjA0426)

References

[1]  DASARI A, YU Z Z, MAI Y W. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites[J]. Materials Science & Engineering Reports, 2009, 63(2): 31-80.
[2]  LI K, GAO X L, ROY A K. Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites[J]. Mechanics of Advanced Materials and Structures, 2006, 13(4): 317-328.
[3]  BRINSON L C, LIN W S. Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites[J]. Composite Structures, 2003, 41(3): 353-367.
[4]  FISHER F T, BRINSON L C. Viscoelastic interphase in polymer-matrix composites: theoretical models and finite element analysis[J]. Composites Science and Technology, 2003, 61(5): 731-748.
[5]  LAHELLEC N, SUQUET P. Effective behavior of linear viscoelastic composites: A time-integration approach[J]. International Journal of Solids and Structures, 2007, 44(2): 507-529.
[6]  YANG J L, ZHANG Z, SCHLARB A K, et al. On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance[J]. Polymer, 2006, 47(19): 6745-6758.
[7]  梁军, 杜善义. 黏弹性复合材料力学性能的细观研究[J]. 复合材料学报, 2000, 18(1): 97-101. LIANG J, DU S Y. Study on mechanical properties of viscoelastic matrix composite by micromechanics[J]. Acta Materiae Compositae Sinica, 2000, 18(1): 97-101(in Chinese).
[8]  HAASEMANN G, ULBRICHT V. Numerical evaluation of the viscoelastic and viscoplastic behavior of composites[J]. Tchnishe Mechanik, 2009, 30(1-3): 122-135.
[9]  NAIK A, ABOLFATHI N, KARAMI G, et al. Micromechanical viscoelastic characterization of fibrous composites[J]. Journal of Composite Materials, 2008, 42(12): 1179-1204.
[10]  SIENGCHIN S, KARGER K J. Creep behavior of polystyrene/fluorohectorite micro- and nanocomposites[J]. Macromolecular Rapid Communications, 2006, 27(11): 2292-3002.
[11]  STARKOVA O, YANG J, ZHANG Z. Application of time-stress superposition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes[J]. Composites Science & Technology, 2007, 67(13): 2691-2698.
[12]  张忠, 贾玉, 高云, 等. 聚合物纳米复合材料蠕变性能研究进展[J]. 力学进展, 2011, 41(3): 266-278. ZHANG Z, JIA Y, GAO Y, et al. Research progress in creep of polymer nanocomposites[J]. Advanced in Mechanics, 2011, 41(3): 266-278(in Chinese).
[13]  钟轶峰, 张亮亮, 周小平, 等. 复合材料热导性能的变分渐近均匀化细观模型[J]. 复合材料学报, 2015, 32(4): 1173-1178. ZHONG Y F, ZHANG L L, ZHOU X P, et al. Variational asymptotic homogenization micromechanics model for thermal conductivity of composites[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 1173-1178(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133