|
- 2016
新型聚2-氨基苯磺酸改性TiO2纳米颗粒的制备及光催化性能
|
Abstract:
为提高TiO2的光催化活性,利用原位氧化聚合法制备聚2-氨基苯磺酸改性TiO2(P2ABSA/TiO2)纳米颗粒,通过TEM、EDS、XRD、UV-Vis DRS和Photocurrent Test进行表征,以亚甲基蓝为模拟污染物,优化纳米材料制备条件,考察初始pH值和P2ABSA/TiO2浓度对光催化效果的影响,通过捕捉实验判定活性氧物种在光催化过程中的贡献。结果表明:P2ABSA/TiO2纳米颗粒最优制备条件为P2ABSA、TiO2和氧化剂的物质的量之比 2∶1∶2、HCl浓度 1.2 mol/L;TiO2表面存在一层P2ABSA膜,P2ABSA改性没有改变TiO2的物相和晶粒尺寸;P2ABSA/TiO2纳米颗粒对可见光的响应提高,光电流密度从18.3 μA/cm2提高到28.7 μA/cm2;溶液初始pH值由3.93升至11.36,亚甲基蓝脱色率由92.0%提高到99.0%,P2ABSA/TiO2纳米颗粒浓度最佳值为1.5 g/L;活性氧物种在光催化过程中的贡献大小顺序为·OH > h+ > ·O2-,P2ABSA对TiO2的光敏化作用是P2ABSA/TiO2纳米颗粒光催化活性得到提高的主要原因。 In order to improve the photocatalytic activity of TiO2, the poly-2-aminobenzene sulfonic acid modified TiO2 (P2ABSA/TiO2) nano particles were synthesized via the in situ oxidative polymerization method. The prepared nano particles were characterized by TEM, EDS, XRD, UV-Vis DRS and Photocurrent Test. The methylene blue was used as simulated pollutants, the synthesis conditions of nano materials were optimized, the influences of initial pH value and P2ABSA/TiO2 concentration on photocatalytic effect were investigated, the contributions of reactive oxidation species were determined by using trap experiment in photocatalytic process. The results show that the optimum synthesis conditions of P2ABSA/TiO2 nano particles are P2ABSA, TiO2 and oxidant amount of substance ratio 2:1:2, HCl concentration 1.2 mol/L. There is a P2ABSA film on the surface of TiO2. The modification of P2ABSA does not impact on the phase and grain size of TiO2. P2ABSA/TiO2 nano particles enhance the response to visible light and photocurrent density (from 18.3 μA/cm2 to 28.7 μA/cm2). The photocatalytic degradation rate of methylene blue increases from 92.0% to 99.0%, with initial pH value increasing from 3.93 to 11.36, the optimum concentration of P2ABSA/TiO2 nano particles is 1.5 g/L. The contribution order of reactive oxidation species in photocatalytic process is ·OH > h+ > ·O2-, the photosensitization effect of P2ABSA to TiO2 is a key reason for enhancing photocatalytic activity of P2ABSA/TiO2 nano particles. 国家自然科学基金(21207082);山东省环境保护厅项目(SDHBPJ-ZB-09);山东省自然科学基金(ZR2012DM009)
[1] | HYUNWOONG P, YISEUL P, WOOYUL K, et al. Surface modification of TiO2 photocatalyst for environmental applications[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2013, 15: 1-20. |
[2] | HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental application of semiconductor photocatalysis[J]. Chemical Review, 1995, 95(1): 69-96. |
[3] | MOHAMED A S, AHMED F A, AHMED B Z. Photocatalytic degradation of Allura red and Quinoline yellow with polyaniline/TiO2 nanocomposite[J]. Applied Catalysis B: Environmental, 2009, 91(1-2): 59-66. |
[4] | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
[5] | SEEMA S, HARI M, PRAMOD K S. Polymersupported titanium dioxide photocatalysts for environmental remediation: A review[J]. Applied Catalysis A: General, 2013, 462-463: 178-195. |
[6] | LI D, DONG W J, SUN S M, et al. Photocataly-tic degradation of acid chrome blue K with Porphyrin-sensitized TiO2 under visible light[J]. Journal of Physical Chemistry C, 2008, 112(38): 14878-14882. |
[7] | WANG F, MIN S X, HAN Y Q, et al. Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2 composite photocatalysts[J]. Superlattices and Microstructures, 2010, 48: 170-180. |
[8] | WANG Y J, XU J, ZONG W Z, et al. Enhancement of photoelectric catalytic activity of TiO2 film via polyaniline hybridization[J]. Journal of Solid State Chemistry, 2011, 184: 1433-1438. |
[9] | TENG Y, FAN L M, DAI Y L, et al. Electrochemical sensor for paracetamol recognition and detection based on catalytic and imprinted composite film[J]. Biosensors and Bioelectronics, 2015, 71: 137-142. |
[10] | SUSHANTA D, NILADRI B, HLENGILIZWE N, et al. Optimization and mechanism elucidation of the catalytic photo-degradation of the dyes Eosin Yellow (EY) and Naphthol blue black(NBB) by a polyaniline-coated titanium dioxide nanocomposite[J]. Applied Catalysis B: Environmental, 2015, 163: 330-342. |
[11] | LI X Y, WANG D S, CHENG G X, et al. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination[J]. Applied Catalysis B: Environmental, 2008, 81(3-4): 267-273. |
[12] | 沈伟韧, 赵文宽, 贺飞, 等. TiO2光催化反应及其在废水处理中的应用[J]. 化学进展, 1998, 10(4): 349-361. SHEN W R, ZHAO W K, HE F, et al. TiO2-based photocatalysis and its applications for waste water treatment[J]. Progress in Chemistry, 1998, 10(4): 349-361 (in Chinese). |
[13] | LI X C, JIANG G L, HE G H, et al. Preparation of porous PPy/TiO2 composites: Improved visible light photoactivity and the mechanism[J]. Chemical Engineering Journal, 2014, 236: 480-489. |
[14] | LI F B, LI X Z, HOU M F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control[J]. Applied Catalysis B: Environmental, 2004, 48(3): 185-194. |
[15] | ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 260-271. |
[16] | 陈苗, 敖卫, 王如意, 等. 氮掺杂TiO2中空复合微球的制备及可见光光催化性能[J]. 复合材料学报, 2015, 32(3): 918-923. CHEN M, AO W, WANG R Y, et al. Preparation and visible-light photocatalytic property of nitro-gen-doped TiO2 hollow composite microspheres[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 918-923 (in Chinese). |
[17] | KAKARLA R R, MAHBUB H, VINCENT G G. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis[J]. Applied Catalysis A: General, 2015, 489: 1-16. |
[18] | 杨传玺, 董文平, 乔光明, 等. 二氧化钛改性及应用研究进展[J]. 化工新型材料, 2015, 43(10): 27-29. YANG C X, DONG W P, QIAO G M, et al. Research on TiO2 modification and application: A review[J]. New Chemical Materials, 2015, 43(10): 27-29 (in Chinese). |
[19] | LIANG H C, LI X Z. Visible-induced photocatalytic reactivity of polymer-sensitized titania nanotube films[J]. Applied Catalysis B: Environmental, 2009, 86: 8-17. |
[20] | ZHU Y F, DAN Y. Photocatalytic activity of poly-(3-hexylthiophene)/titanium dioxide compositesfor degrading methyl orange[J]. Solar Energy Materials & Solar Cells, 2010, 94: 1658-1664. |
[21] | LIAO G Z, CHEN S, QUAN X, et al. Photonic crystal coupled TiO2/polymer hybrid for efficient photocatalysis under visible light irradiation[J]. Environmental Science & Technology, 2010, 44(9): 3481-3485. |
[22] | WANG D S, WANG Y H, LI X Y, et al. Sunlight photocatalytic activity of polypyrrole-TiO2 nanocomposites prepared by 'in situ' method[J]. Catalysis Communications, 2008, 9(6): 1162-1166. |
[23] | LI Q L, ZHANG C R, LI J Q. Photocatalysis and wave-absorbing properties of polyaniline/TiO2 microbelts composite by in situ polymerization method[J]. Applied Surface Science, 2010, 257(3): 944-948. |
[24] | ZHANG H, ZONG R L, ZHAO J C, et al. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI[J]. Environmental Science & Technology, 2008, 42(10): 3803-3807. |
[25] | RADOICIC M, SAPONJIC Z, JANKOVIC I A, et al. Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles[J]. Applied Catalysis B: Environmental, 2013, 136-137: 133-139. |
[26] | 杨传玺, 董文平, 王炜亮, 等. 导电聚合物改性TiO2光催化剂合成及应用研究进展[J]. 化工新型材料, 2015, 43(1): 226-228. YANG C X, DONG W P, WANG W L, et al. Research of synthesis and application of conducting polymer modified TiO2 photocatalyst: A review[J]. New Chemical Materials, 2015, 43(1): 226-228 (in Chinese). |
[27] | 任学昌, 念娟妮, 王雪姣, 等. TiO2/PPY/Fe3O4的水热法制备及其光催化与磁回收性能[J]. 中国环境科学, 2012, 32(5): 863-868. REN X C, NIAN J N, WANG X J, et al. Hydrothermal synthesis of TiO2/PPY/Fe3O4 and its photocatalytic activity and magnetic recovery[J]. China Environmental Science, 2012, 32(5): 863-868 (in Chinese). |
[28] | LIAO G Z, CHEN S, QUAN X, et al. Remarkable improvement of visible light photocatalysis with PANI modified core-shell mesoporous TiO2 microspheres[J]. Applied Catalysis B: Environmental, 2011, 102(1-2): 126-131. |
[29] | WANG D S, ZHANG J, LUO Q Z, et al. Characterization and photocatalytic activity of poly-(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light[J]. Journal of Hazardous Materials, 2009, 169(1-3): 546-550. |
[30] | LIN Y M, LI D Z, HU J H, et al. Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite[J]. Journal of Physical Chemistry C, 2012, 116(9): 5764-5772. |
[31] | MARIA S, DIMITRIS I K, XENOPHON E V. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions[J]. Applied Catalysis B: Environmental, 2003, 40(4): 271-286. |
[32] | 周琪, 钟永辉, 陈星, 等. 石墨烯/纳米TiO2复合材料的制备及其光催化性能[J]. 复合材料学报, 2014, 32(2): 255-262. ZHOU Q, ZHONG Y H, CHEN X, et al. Preparation and photocatalytic activity graphene/TiO2 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 255-262 (in Chinese). |