|
- 2016
基于热固性树脂基复合材料帽型加筋结构制造的硅橡胶芯模预制调型孔理论建模与实验验证
|
Abstract:
硅橡胶芯模是实现热固性树脂基复合材料帽型加筋结构共固化成型的关键工装之一,而在预浸料固化加热过程中硅橡胶芯模的热膨胀需要通过预制适当的调型孔来消除,以保证帽型加筋结构的成型质量。首先,通过建立硅橡胶芯模预制调型孔热力耦合有限元分析模型对不同结构的硅橡胶芯模进行了计算机仿真,从而得出了实现复合材料帽型加筋结构形性协同制造的硅橡胶芯模预制调型孔最佳尺寸范围。然后,综合分析了硅橡胶芯模受热膨胀的可能影响因素,进而建立了考虑体积修正系数的预制调型孔计算模型。接着,利用有限元方法回归了芯模预制调型孔体积修正系数,并利用回归出的修正系数对不同截面尺寸的帽型结构进行了仿真验证,从而确定了较为准确的预制调型孔理论计算模型。最后,通过实验验证了该数学模型及有限元分析方法的正确性,为制造复合材料帽型加筋结构提供了理论与实验依据。 Silicone rubber core mold is one of the key tooling to realize the co-curing molding process of resin matrix thermosetting composite hat-stiffened structures, while in the curing and heating process of prepreg, the heat inflation of silicone rubber core mold needs to be eliminated by prefabricating appropriate adjusting hole, so as to ensure the forming quality of hat-stiffened structure. The silicone rubber core molds with different structures were simulated using computer by establishing the thermo-mechanical coupled finite element analysis model for the prefabricated adjusting hole of silicone rubber core mold, thus the optimal size range of the prefabricated adjusting hole of silicone rubber mold which can realize the collaborative manufacture of shape and properties of composite hat-stiffened structures' was obtained firstly. Then, the possible impact factors of heating expansion of silicone rubber core mold were analyzed comprehensively, so that the calculation model of prefabricated adjusting hole considering the volume correction coefficient was found. After that, the volume correction coefficient for the prefabricated adjusting hole of core mold was regressed by finite element method, and the regressed correction coefficient was employed to conduct the simulation verification of the hat-stiffened structures with different sizes of cross-sections. Thus, the relative accurate theoretical calculating model for prefabricated adjusting hole was determined. Finally, the correctness of the mathematical model and the finite element analysis was verified by experiments, which would provide theory and experimental basis for the fabrication of composite hat-stiffened structures. "973"计划(2014CB046502);中国博士后基金(2014M562127);湖南省博士后专项基金(2014RS4031);国家重点实验室开放基金(Kfkt2013-04)
[1] | 肖少伯. 复合材料成型新工艺——热涨成型法[J]. 宇航材料工艺, 1996(6):10-13. XIAO S B. New process of composite molding-Thermal expansion molding[J]. Aerospace Materials and Technology, 1996(6):10-13 (in Chinese). |
[2] | 罗辑, 辛朝波, 顾轶卓, 等. 热膨胀工艺硅橡胶芯模对复合材料圆管成型的影响[J]. 复合材料学报, 2012, 29(2):40-45. LUO J, XIN C B, GU Y Z, et al. Effects of silicone rubber mandrel on the molding of composite circular rubes during thermal expansion process[J]. Acta Materiae Compositae Sinica, 2012, 29(2):40-45 (in Chinese). |
[3] | 刘钧, 彭超义, 杜刚, 等. 膨胀芯模法制备炭/环氧主承力管件研究[J]. 材料工程, 2007(9):37-41. LIU J, PENG C Y, DU G, et al. Fabricating carbon/epoxy primary-load bearing cylinders by thermal expansion mould method[J]. Material Engineering, 2007(9):37-41 (in Chinese). |
[4] | 邵蒙, 顾轶卓, 程勇. 硅橡胶热膨胀模具设计与纵横加筋壁板成型质量分析[J]. 航空学报, 2012, 33(6):1116-1124. SHAO M, GU Y Z, CHENG Y. Thermal expansion mold design using silicone rubber and processing quality analysis of bidirectional stiffened plates[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):1116-1124 (in Chinese). |
[5] | 全国纤维增强塑料标准化技术委员会. 碳纤维增强塑料孔隙含量和纤维体积含量试验方法:GB/T 3365-2008[S]. 北京:中国标准出版社, 2008. Fiber Reinforced Plastics National Standardization Technical Committee. Carbon fiber reinforced plastics-Determination of void content and fiber volume content:GB/T 3365-2008[S]. Beijing:Standards Press of China, 2008 (in Chinese). |
[6] | PRUSTY B G. Free vibration and bucking response of hat-stiffened composite panels under general loading[J]. International Journal of Mechanical Science, 2008, 50(8):1326-1333. |
[7] | KIM G H, CHOI J H, KWEON J H. Manufacture and performance evaluation of the composite hat-stiffened panel[J]. Composite Structures, 2010, 92(9):2276-2284. |
[8] | 陈绍杰. 复合材料技术与大型飞机[J]. 航空学报, 2008, 29(3):605-610. CHEN S J. Composite technology and large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):605-610 (in Chinese). |
[9] | FUNATOGAWA O, KIMPARA L, TAKEHANA M. On the stiffening effect of hat-shaped stiffeners on a plate[J]. Naval Architecture and Ocean Engineering, 1980, 18:115-131. |
[10] | SHENOI R A, HAWKINS G L. An investigation into the performance characteristics of top-hat stiffener to shell plating joints[J]. Composite Structures, 1995, 30(1):109-121. |
[11] | FALZON B G. The behaviour of damage tolerant hat-stiffened composite panels loaded in uniaxial compression[J]. Composite Part A:Applied Science and Manufacturing, 2001, 32(9):1255-1262. |
[12] | LI S J, ZHAN L H, CHEN R, et al. The influence of cure pressure on microstructure, temperature field and mechanical properties of advanced polymer-matrix composite laminates[J]. Fibers and Polymers, 2014, 15(11):2404-2409. |
[13] | 卢鑫, 孙志杰, 李超, 等. 硅橡胶热膨胀工艺预浸料铺层内树脂压力变化规律[J]. 复合材料学报, 2011, 28(3):50-55. LU X, SUN Z J, LI C, et al. Resin pressure variation in prepreg stack during thermal expansion process with silicone rubber[J]. Acta Materiae Compositae Sinica, 2011, 28(3):50-55 (in Chinese). |
[14] | 荀国立, 徐洪波. 复合材料帽型加筋壁板典型件共固化成型[C]//第17届全国复合材料学术会议(复合材料制造技术与设备分论坛)论文集. 北京:中国复合材料学会, 2012:536-538. XUN G L, XU H B. Co-curing molding on typical composites structure of hat-stiffened panel[C]//Proceedings of 17th National Conference on Composite Materials (Sub-Forum for Composite Material Manufacturing Technology and Equipment). Beijing:Chinese Society for Composite Materials, 2012:536-538 (in Chinese). |