|
- 2016
有机硅交联剂对硅树脂/聚苯乙烯多孔复合材料性能的影响
|
Abstract:
以苯乙烯(St)为单体,含甲基丙烯酰氧基丙基的有机硅树脂(MTQ)为交联剂,采用高内相比乳液模板(HIPE)法制备了蜂窝状、低密度及高孔隙率的MTQ/聚苯乙烯(PS)多孔复合材料,研究了MTQ对聚合物多孔复合材料微观结构、压缩性能及热稳定性的影响。结果表明:MTQ/PS多孔复合材料的泡孔呈立体球形且泡孔壁上有丰富的互连孔,相互贯通性良好,泡孔直径为2~9μm,互连孔的孔径大小介于0.35~1.85μm;所得多孔材料孔隙率可控,总孔隙率最高可达92%;该多孔复合材料的压缩强度为0.28~0.74 MPa,压缩模量为4.86~13.54MPa。当MTQ与St的质量比为30:100时,可获得泡孔直径较小、互连孔道较窄、压缩性能和热稳定性较好的MTQ/PS多孔复合材料。 Using styrene (St) as monomer and organic silicone resin with methacryloxypropyl group (MTQ) as crosslinking-agent, the MTQ/polystyrene (PS) porous composites with honeycomb, low densities and high porosity were prepared by high internal phase ratio emulsions template (HIPE) method. The effects of MTQ on microstructure, compressive properties and thermal stability of polymer porous composites were investigated. Results indicate that the MTQ/PS porous composites have three-dimensional spherical cavities and rich interconnection pores in cavities wall, connectivity is good, and the diameters of pores range from 2-9 μm with the average interconnection pores diameters of 0.35-1.85 μm. The porosity of porous materials could be controlled, and total porosity could reach as high as 92%. Additionally, the compressive strength of porous composites is 0.28-0.74 MPa, and compressive modulus is 4.86-13.54 MPa. When the MTQ to St mass ratio is 30:100, MTQ/PS porous composites with smaller cavities diameter, narrow interconnection pores, good compression properties and thermal stability could be obtained. 国家自然科学基金(51203047)
[1] | LIU C Y, LI L X, SONG H H, et al. Facile synthesis of ordered mesoporous carbons from F108/resorcinol-formaldehyde composites obtained in basic media[J]. Chemical Communications, 2007, 21(7):757-759. |
[2] | HOLST J R, STOCKEL E, ADAMS D J, et al. High surface area networks from tetrahedral monomers:Metal-catalyzed coupling, thermal polymerization, and 'click' chemistry[J]. Macromolecules, 2010, 43(20):8531-8538. |
[3] | ROSENBAUER E M, LANDFESTER K, MUSYANOVYCH A. Surgace-active monomer as a stabilizer for polyurea manocapsules synthesized via interfacial polyaddition in inverse miniemulsion[J]. Langmuir, 2009, 25(20):12084-12091. |
[4] | SILNERSTEIN M S. PolyHIPEs:Recent advances in emulsion-templated porous polymers[J]. Progress in Polymer Science, 2014, 39(1):199-234. |
[5] | COHEN N, SILVERSTEIN M S. One-pot emulsion-templated synthesis of an elastomer-filled hydrogel framework[J]. Macromolecules, 2012, 45(3):1612-1621. |
[6] | 中国国家标准化管理委员会. 塑料密度和相对密度试验方法:GB 1033-86[S].北京:中国标准出版社, 1987. Standardization Administration of the People's Republic of China. Test method for density and relative density of plastics:GB 1033-86[S]. Beijing:Standards Press of China, 1987 (in Chinese). |
[7] | 中橡集团株洲橡胶塑料工业研究设计院. 高聚物多孔弹性材料压缩应力应变特性测定第1部分:低密度材料:GB/T 18942.1-2003[S]. 北京:中国标准出版社, 2003. Zhongxiang Group Zhuzhou Rubber Plastic Industrial Research Institute. Polymeric materials, cellular flexible-Determination of stress-strain characteristic in compression-Part1:Low-density materials:GB/T 18942.1-2003[S]. Beijing:Standards Press of China, 2003 (in Chinese). |
[8] | WU D C, XU F, SUN B, et al. Design and preparation of porous polymers[J]. Chemical Reviews, 2012, 112(7):3959-4015. |
[9] | JENNY N, SILVERSTEIN M S. Interconnected silsesquioxane organic networks in porous nanocomposites synthesized within high internal phase emulsions[J]. Chemistry of Materials, 2008, 20(4):1571-1577. |
[10] | 刘培生. 多孔材料在压缩载荷作用下的屈曲失效模式分析[J]. 物理学报, 2010, 59(12):8801-8806. LIU P S. Analyses of buckling failure mode for porous materials under compression[J]. Acta Physica Sinica, 2010, 59(12):8801-8806 (in Chinese). |
[11] | 杨雄发, 杨琳琳, 曹诚, 等. 一种高折光率发光二极管封装硅树脂的研制[J]. 高等学校化学学报, 2012, 33(5):1078-1083. YANG X F, YANG L L, CAO C, et al. Preparation of a silicone resin-type packaging material with high refractive lndex for light emitting diodes[J]. Chemical Journal of Chinese Universities, 2012, 33(5):1078-1083 (in Chinese). |
[12] | SUCH G K, TJIPTO E, POSTMA A, et al. Ultrathin, responsive polymer click capsules[J]. Nano Letters, 2007, 7(6):1706-1710. |
[13] | LI B, SU F, LUO H K, et al. Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water[J]. Microporous and Mesoporous Materials, 2011, 138(3):207-214. |
[14] | YUNNUS S, DELCORTE A, POLEUNIS C, et al. A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by tof-sims imaging[J]. Advanced Functional Materials, 2007, 17(7):1079-1084. |
[15] | YABU H, SHIMOMURA M. Simple fabrication of micro lens arrays[J]. Langmuir, 2005, 21(5):1709-1711. |
[16] | KIMMINS S D, CAMERON N R. Functional porous polymers by emulsion templating:Recent advances[J]. Advanced Functional Materials, 2011, 21(2):211-225. |
[17] | 涂文英, 张海燕, 林锦, 等. 多层石墨/硅树脂导热复合材料的制备与性能[J]. 复合材料学报, 2013, 30(2):70-74. TU W Y, ZHANG H Y, LIN J, et al. Preparation and properties of multilayer graphite/silicon resin thermal conductive materials[J]. Acta Materiae Compositae Sinica, 2013, 30(2):70-74 (in Chinese). |
[18] | 官成兰, 孙争光, 张玉红, 等. 聚硅氧烷型交联剂的制备及其在多孔材料中的应用[J]. 复合材料学报, 2015, 32(6):1807-1813. GUAN C L, SUN Z G, ZHANG Y H, et al. Preparation and application in polymer porous material of polysiloxane crosslinking agent[J]. Acta Materiae Compositae Sinica, 2015, 32(6):1807-1813 (in Chinese). |
[19] | 罗渝然. 化学键能数据手册[M]. 北京:科学出版社, 2005:222-277. LUO Y R. Comprehensive handbook of chemical bond energies[M]. Beijing:Science Press, 2005:222-277 (in Chinese). |
[20] | LIU X, BASU A. Core functionalization of hollow polymer nanocpsules[J]. Journal of the American Chemical Society, 2009, 131(16):5718-5719. |
[21] | KAILASAM K, JUN Y S, KATEKOMOL P, et al. Mesoporous melamine resins by soft templation of block-co-polymer mesophases[J]. Chemistry of Materials, 2010, 22(2):428-434. |
[22] | 范云鸽, 李燕鸿, 马建标. 聚二乙烯苯型多孔吸附剂的纳米孔结构表征[J]. 高分子学报, 2002(2):173-179. FAN Y G, LI Y H, MA J B. Characterization of the nanoscaled pores in porous polydivinylbenzene adsorbents[J]. Acta Polymerica Sinica, 2002(2):173-179 (in Chinese). |