|
- 2016
基体合金对连续M40石墨纤维/Al复合材料纤维损伤及断裂机制的影响
|
Abstract:
选用M40石墨纤维为增强体,采用真空气压浸渗法制备了纤维体积分数为40%,基体合金分别为ZL102、ZL114A、ZL205A及ZL301合金的连续M40/Al复合材料,并用NaOH溶液萃取出M40纤维,研究了基体合金对连续M40/Al复合材料纤维损伤和断裂机制的影响。结果表明:不同的基体合金对M40纤维造成的损伤差异较大,从M40/ZL301复合材料中萃取的纤维拉伸强度最高,其拉伸强度为1 686 MPa,约为纤维原丝拉伸强度的38.3%;而从M40/ZL102复合材料中萃取的纤维拉伸强度最低,其拉伸强度仅为687 MPa,且纤维表面粗糙程度不一。不同M40/Al复合材料的断裂机制存在明显差别,M40/ZL102和M40/ZL114A复合材料断裂时无纤维拔出及界面脱粘,裂纹横向穿过纤维导致复合材料在低应力下失效;M40/ZL205A复合材料则表现为少量纤维拔出,界面轻微脱粘;同时,M40/ZL301复合材料表现为大量纤维拔出,裂纹沿界面纵向扩展,界面脱粘明显,纤维充分发挥其承载作用,复合材料的拉伸强度最高,达到了670.2 MPa。 M40 graphite fiber was selected as reinforced material, continuous M40/Al composites whose volume fraction of fiber was 40% and matrix alloys were ZL102, ZL114A, ZL205A and ZL301 alloys respectively were prepared by vacuum gas pressure infiltration, and M40 fibers were extracted using NaOH solution, thus the effects of matrix alloy on the fiber damage and fracture mechanism of continuous M40/Al composites were investigated. The results show that the damages caused by different matrix alloys to M40 fibers are quite different, the tensile strength of fiber extracted from M40/ZL301 composite is the highest, the tensile strength of it is 1 686 MPa, which is about 38.3% of the raw silk tensile strength. While the tensile strength of fiber extracted from M40/ZL102 composite is the lowest, the tensile strength is only 687 MPa, and the roughness of fiber surface is different. There are obvious differences for the fracture mechanisms of different M40/Al composites, when M40/ZL102 and M40/ZL114A composites fracture, there are no fiber pulling out and interfacial debonding, crack passes through fiber transversely, which leads to the failure of composites at low stress. While M40/ZL205A composite shows a small amount of fiber pulling out and slight interfacial debonding. At the same time, M40/ZL301 composite shows a large number of fiber pulling out, crack extends along the interface longitudinally, the interface debonding is obvious, fiber gives full play to its bearing function, and the tensile strength of composite is the highest, which reaches 670.2 MPa. 国家自然科学基金(51365043);江西省自然科学基金(20151BAB206004);轻合金加工科学与技术国防重点学科实验室和航空材料热加工技术航空科技重点实验室联合资助项目(GF201101004)
[1] | SONG M H, XIU Z Y, WU G H, et al. Nonlinear temperature characteristic of thermal expansion of Grf/Mg composites[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(Suppl.2): 382-386. |
[2] | 廖焕文, 徐志锋, 余欢, 等. 纤维预热温度对真空气压浸渗连续SiCf/Al复合材料致密度和力学性能的影响[J]. 中国有色金属学报, 2014, 24(9): 2264-2271. LIAO H W, XU Z F, YU H, et al. Effects of fiber preheating temperature on density and mechanical properties of continuous SiCf/Al composites manufactured by vacuum pressure infiltration[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(9): 2264-2271(in Chinese). |
[3] | 王丽雪, 曹丽云, 刘海鸥. 铝基复合材料研究的进展[J]. 轻合金加工技术, 2005, 33(8): 10-12. WANG L X, CAO L Y, LIU H O. Progress of aluminium matrix composites[J]. Light Alloy Fabrication Technology, 2005, 33(8): 10-12(in Chinese). |
[4] | 肖汉宁, 陈钢军, 高鹏召, 等. SiC涂层制备工艺对碳纤维抗氧化性的影响[J]. 湖南大学学报, 2007, 34(8): 41-44. XIAO H N, CHEN G J, GAO P Z, et al. Influence of SiC coating preparation process on the oxidation resistance of carbon fiber braids[J]. Journal of Hunan University, 2007, 34(8): 41-44(in Chinese). |
[5] | FRIEND C M. The effect of matrix properties on reinforcement in short alumina fibre-aluminum metal matrix composites[J]. Journal of Materials Science, 1987, 22(11): 3005-3010. |
[6] | 康国政, 高庆, 杨川, 等. 基体特性对σ-Al2O3/Al合金复合材料力学行为的影响[J]. 复合材料学报, 2000, 17(2): 25-29. KANG G Z, GAO Q, YANG C, et al. Effects of matrix properties on mechanical performance of σ-Al2O3/Al alloy composites[J]. Acta Materiae Compositae Sinica, 2000, 17(2): 25-29(in Chinese). |
[7] | 徐志锋, 徐燕杰, 余欢, 等. 基体合金对连续SiCf/Al复合材料的显微组织及拉伸强度的影响[J]. 中国有色金属学报, 2015, 25(2): 392-400. XU Z F, XU Y J, YU H, et al. Effect of matrix alloy on microstructure and tensile strength of continuous SiCf/Al composite[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2): 392-400(in Chinese). |
[8] | QI L H, MA Y Q, ZHOU J M, et al. Effect of fiber orientation on mechanical properties of 2D-Cf/Al composites by liquid-solid extrusion following Vacuum infiltration technique[J]. Materials Science and Engineering: A, 2015, 625: 343-349. |
[9] | MA Y Q, QI L H, ZHENG W Q, et al. Effect of specific pressure on fabrication of 2D-Cf/Al composite by vacuum and pressure infiltration[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7): 1915-1921. |
[10] | 张国定, 邹龙飞. 单向纤维增强铝复合材料的基体合金化[J]. 中国有色金属学报, 1994, 4(3): 55-59. ZHANG G D, ZOU L F. Matrix alloying of unidirectional fiber reinforced aluminum composite[J]. The Chinese Journal of Nonferrous Metals, 1994, 4(3): 55-59(in Chinese). |
[11] | 王旭. 合金元素对Cf/Al复合材料微观组织及性能影响[D]. 哈尔滨: 哈尔滨工业大学, 2010. WANG X. The effect of alloying elements on the microstructure and properties of Cf/Al composite[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese). |
[12] | 武高辉. 金属基复合材料发展的挑战与机遇[J]. 复合材料学报, 2014, 31(5): 1228-1237. WU G H. Development challenge and opportunity of metal matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(5): 1228-1237(in Chinese). |
[13] | 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2): 317-322. MA L M, ZHANG J Z, YUE G Q, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 317-322(in Chinese). |
[14] | 傅惠民, 杨雨松, 张勇波. 国产碳纤维CCF300与T300碳纤维复合材料拉伸载荷下的失效模式分析[J]. 航空动力学报, 2010, 25(10): 2163-2169. FU H M, YANG Y S, ZHANG Y B. Failure mode research on CCF300 and T300 composites under tensile strength[J]. Journal of Aerospace Power, 2010, 25(10): 2163-2169(in Chinese). |
[15] | SILVAIN J F, PROULT A, LAHAYE M, et al. Microstructure and chemical analysis of C/Cu/Al interfacial zones[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(12): 1143-1149. |