全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

无机纳米ZnO或蒙脱土颗粒掺杂对低密度聚乙烯介电性能的影响
Effects of inorganic nano ZnO or montmorillonite inorganic nanoparticles on dielectric properties of low density polyethylene

DOI: 10.13801/j.cnki.fhclxb.20180322.003

Keywords: 纳米ZnO,纳米蒙脱土,低密度聚乙烯(LDPE),介电性能
nano ZnO
,nano montmorillonite,low density polyethylene (LDPE),dielectric property

Full-Text   Cite this paper   Add to My Lib

Abstract:

选择在低密度聚乙烯(LDPE)中掺杂无机纳米ZnO和蒙脱土(MMT)颗粒,探讨不同形态无机纳米颗粒对LDPE介电性能的影响。利用熔融共混法配合不同冷却方式制备不同结晶形态的纳米ZnO/LDPE和MMT/LDPE复合材料。通过FTIR、偏光显微镜(PLM)、SEM、DSC和热刺激电流(TSC)对试样进行表征,并。研究了纳米ZnO/LDPE和MMT/LDPE复合材料的交流击穿特性,结果表明:掺杂适当质量分数并经表面修饰的无机纳米颗粒可有效的避免其团聚现象,提高纳米ZnO/LDPE和MMT/LDPE复合材料的结晶速率,使结晶结构更完善,同时无机纳米颗粒掺杂使LDPE的陷阱密度和深度均有所增加,载流子入陷在试样内部形成界面"局域态"。经油冷却方式制备的纳米ZnO/LDPE和MMT/LDPE复合材料击穿场强比空气自然冷却分别高13.6%和14.4%,当掺杂纳米粒子质量分数为3wt%时,复合材料击穿场强出现最大值,其中纳米ZnO/LDPE复合材料比MMT/LDPE复合材料的击穿场强值高0.68%;电导率试验结果表明:纳米ZnO/LDPE复合材料电导率比MMT/LDPE复合材料低。介电性能测试表明,在1~105 Hz的测试频率范围内,纳米ZnO/LDPE复合材料和MMT/LDPE复合材料介电常数降低,介质损耗角正切值有所提高。 The inorganic nano ZnO and montmorillonite (MMT) particles were doped in low density polyethylene(LDPE). The effects of inorganic nano particles on the dielectric properties LDPE were discussed. The nano ZnO/LDPE and nano MMT/LDPE composites with different crystal habits were prepared using melt blending polymerization with different cooling methods. The samples were characterization using FTIR, polarizing microscopy (PLM), SEM, DSC and thermally stimulated current (TSC), and the alternating curren breakdown characteristics of nano ZnO/LDPE and nano MMT/LDPE composites was studied. The results indicate that doping proper mass fraction of the inorganic nanoparticles touched by the surface can avoid the agglomeration effectively. It can raise the crystallization rate and improve the crystalline texture of nano ZnO/LDPE and nano MMT/LDPE composites. The inorganic nano particles doping would increase the density and depth of LDPE. Inside the sample would form the interface "localization state" owing to the charge carrier is trapping. The breakdown field strength of nano ZnO/LDPE and MMT/LDPE composites prepared by oil cooling are 13.6% and 14.4% higher than that of the composites prepared by natural air cooling. When the content of the nano particles doped is 3wt%, the breakdown strength of the composites appeares the highest values; the breakdown strength of ZnO/LDPE composite is 0.68% higher than that of MMT/LDPE composite. The conductivity experimental results show that the nano ZnO/LDPE composite conductivity is relatively lower than that of MMT/LDPE composite. The dielectric properties tests show that the nano ZnO/LDPE and MMT/LDPE composites dielectric constant decreases, and the tangent value of dielectric loss angle is improved in the range of 1-105 Hz test frequency. 国家自然科学基金(51577045)

References

[1]  刘文辉, 吴建东, 王俏华, 等. 纳米添加物的粒径对聚合物纳米复合电介质中空间电荷行为的影响[J]. 中国电机工程学报, 2009, 29(s1):61-66. LIU W H, WU J D, WANG Q H, et al. Effect of nano additive size on the space charge behaviour in nanocomposite polymer material[J]. Proceedings of the CSEE, 2009, 29(s1):61-66(in Chinese).
[2]  KANEKO K, SEMI H, MIZUTANI T, et al. Charge transport and space charge formation in low density polyethylene[C]//Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials. Xi'an:IEEE, 2000:71-74.
[3]  吴振升, 叶青, 周远翔, 等. 表面修饰纳米SiO2/XLPE的电导电流和空间电荷特性[J]. 高电压技术, 2014, 40(10):3268-3275. WU Z S, YE Q. ZHOU Y X, et al. Conduction current and space charge characteristics of SiO2/XLPE nanocomposites with nanoparticle surface modification[J]. High Voltage Engineering, 2014, 40(10):3268-3275(in Chinese).
[4]  LEE T H, PARK J H, KIM J U, et al. Thermal properties and temperature distribution of epoxy composite with micro and nano AlN for molded transformer[C]//2013 IEEE International Conference on Solid Dielectrics. Bologna:IEEE, 2013:927-930.
[5]  迟晓红, 高俊国, 郑杰, 等. 聚丙烯中电树枝生长机理研究[J]. 物理学报, 2014, 63(17):177701. CHI X H, GAO J G, ZHENG J, et al. The mechanism of electrical treeing propagation in polypropylene[J]. Acta Phy-sica Sinica, 2014, 63(17):177701(in Chinese).
[6]  田付强. 聚乙烯基无机纳米复合电介质的陷阱特性与电性能研究[D]. 北京:北京交通大学, 2012. TIAN F Q. Investigation on the trap characteristics and electrical properties of polyethylene based nanocomposite[D]. Beijing:Beijing Jiaotong University, 2012(in Chinese).
[7]  KLEIN R J, BARBER P, CHANCE W M, et al. Covalently modified organic nanoplatelets and their use in polymer film capacitors with high dielectric breakdown and wide temperature operation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(4):1234-1238.
[8]  SETHI G, FURMAN E, KOCH B, et al. Influence of impedance contrast on field distribution and tree growth in laminate dielectrics[J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2):025024.
[9]  程羽佳, 张晓虹, 郭宁, 等. 纳米ZnO/LDPE复合材料介电特性[J]. 复合材料学报, 2015, 32(10):1351-1360. CHENG Y J, ZHANG X H, GUO N, et al. Dielectric propeties of nano ZnO/low density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2015, 32(10):1351-1360(in Chinese).
[10]  屠德民, 王新生, 刘付德, 等. 聚合物击穿的陷阱理论及其在聚丙烯上的验证[J]. 电工技术学报, 1993(3):47-51. TU D M, WANG X S, LIU F D, et al. The trap theory of breakdown in polymer and its verification in polypropylene[J]. Transactions of China Electrotechnical Society, 1993(3):47-51(in Chinese).
[11]  李剑, 沈健, 杨丽君, 等. 冷却介质对低密度聚乙烯空间电荷输运特性的影响[J]. 高电压技术, 2010, 36(11):2629-2633. LI J, SHEN J, YANG L J, et al. Influence of cooling medium on space charge transport property of LDPE[J]. High Voltage Engineering, 2010, 36(11):2629-2633(in Chinese).
[12]  FABIANI D, MONTANARI G C, PALMIERI F, et al. The effect of temperature on space charge behavior of epoxy resins containing both micro and nano sized filler[C]//2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Cancun:IEEE, 2011:648-651.
[13]  VENKATESULU B, THOMAS M J. Corona aging studies on silicone rubber nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(2):625-634.
[14]  崔小明, 陈天舒. 纳米氧化锌的制备及表面改性技术进展[J]. 橡胶科技市场, 2010(13):9-14. CUI X M, CHEN T S. Preparation and surface modification of nanometer zinc oxide are reviewed[J]. China Rubber Science and Technology Market, 2010(13):9-14(in Chinese).
[15]  朱诚身. 聚合物结构分析[M]. 北京:科学出版社, 2004. ZHU C S. Structural analysis of polymer[M]. Beijing:China Science Publishing & Media Ltd., 2004(in Chinese).
[16]  TAKEDA T, SUZUKI H, OKAMOTO T. Correlation between space charge distribution under DC voltage and dielectric breakdown properties in XLPE under impulse voltage superposed onto DC voltage[C]//2001 International Symposium on Electrical Insulating Materials. Himeji:IEEE, 2001:493-496.
[17]  LEI Q Q, WANG X, FAN Y. A new method of auto-separating thermally stimulated current[J]. Journal of Applied Physics, 1992, 72(9):4254-4257.
[18]  LEI Q Q, TIAN F Q, YANG C, et al. Modified isothermal discharge current theory and its application in the determination of trap level distribution in polyimide films[J]. Journal of Electrostatics, 2010, 68(3):243-248.
[19]  姚良忠, 吴婧, 王志冰, 等. 未来高压直流电网发展形态分析[J]. 中国电机工程学报, 2014, 34(34):6007-6020. YAO L Z, WU J, WANG Z B, et al. Pattern analysis of future HVDC grid development[J]. Proceedings of the CSEE, 2014, 34(34):6007-6020(in Chinese).
[20]  汤广福, 庞辉, 贺之渊. 先进交直流输电技术在中国的发展与应用[J]. 中国电机工程学报, 2016, 36(7):1760-1771. TANG G F, PANG H, HE Z Y. R&D and application of advanced power transmission technology in China[J]. Proceedings of the CSEE, 2016, 36(7):1760-1771(in Chinese).
[21]  程羽佳, 周雪冬, 成如如, 等. 冷却方式对MMT/LDPE介电性能的影响[J]. 无机材料学报, 2015, 30(12):1295-1302. CHENG Y J, ZHOU X D, CHENG R R, et al. Effects of cooling methods on dielectric properties of MMT/LDPE[J]. Journal of Inorganic Materials, 2015, 30(12):1295-1302(in Chinese).
[22]  CHI X H, GAO J G, GUO J H, et al. Research on interface modification and electrical tree of PE/MMT composites[C]//2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Shenzhen:IEEE, 2013:527-530.
[23]  陈际帆, 周少奇. 表面活性剂和硅烷偶联剂有机复合改性蒙脱土的制备及性能表征[J]. 应用化工, 2009, 38(6):827-831. CHEN J F, ZHOU S Q. Preparation and characterization of organically compounding modified montmorillonite with surfactant and silane coupling agent[J]. Applied Chemical Industry, 2009, 38(6):827-831(in Chinese).
[24]  王金锋, 郑晓泉, 柳立为, 等. LDPE结晶形态对水树枝老化特性的影响[J]. 高电压技术, 2010, 36(3):678-684. WANG J F, ZHENG X Q, LIU L W, et al. Influence of crystalline morphology on water treeing in LDPE[J]. High Voltage Engineering, 2010, 36(3):678-684(in Chinese).
[25]  IEDA M, MIZUTANI T, SUZUOKI Y. TSC and TL studies of carrier trapping in insulating polymers[J]. Memoirs of the Faculty of Engineering in Nagoya University in Japan, 1980, 32(2):173-219.
[26]  DANIKAS M G, TANAKA T. Nanocomposite:A review of electrical treeing and breakdown[J]. IEEE Electrical Insulation Magazine, 2009, 25(4):19-25.
[27]  GREEN C D, VAUGHAN A S. Morphology and crystallisation kinetics of polyethylene/montmorillonite nanocomposites[C]//2007 Annual Report-Conference on Electrical Insulation and Dielectric Phenomena. Vancouver:IEEE, 2007:368-371.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133