|
- 2018
碳化氧化石墨烯/壳聚糖超级电容器电极复合材料的制备及表征
|
Abstract:
采用Ar氛烧结碳化法在600℃、700℃、800℃及900℃下制备了基于氧化石墨烯(GO)/壳聚糖复合材料的超级电容器电极材料。通过XRD、SEM、FTIR及循环伏安等电化学手段,系统评价了碳化的GO/壳聚糖复合材料作为超级电容器电极材料的可能性。通过与文献报道的纯壳聚糖碳化材料的相关性能进行比较,结果表明:碳化GO/壳聚糖复合材料力学性能较纯壳聚糖碳化材料提高约67%,而且具有良好的电容器材料的性质。800℃碳化GO/壳聚糖复合材料样品的比电容达131 F/g,1 500次充放电后比电容保持率达97%。 The carbonized graphene oxide(GO)/chitosan composites were prepared by atmosphere sintering in Ar atmosphere at 600℃, 700℃, 800℃ and 900℃. The carbonized GO/chitosan composites were characterized by XRD, SEM, FTIR and electrochemical station. The results indicate that the carbonized GO/chitosan composites exhibit the significant improvement (around 67%) in mechanical properties comparing with pristine chitosan. The specific capacitance of the carbonized GO/chitosan sample fabricated at 800℃ is about 131 F/g, the specific capacitance retention after 1 500 cycles is higher than 97%. 国家自然科学青年基金(31300793);西南科技大学创新基金(CX16-002)
[1] | ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037):1537-1541. |
[2] | MILLER J R, SIMON P. Electrochemical capacitors for energy management[J]. Science Magazine, 2008, 321(5889):651-652. |
[3] | ZHANG H, ZHANG X, SUN X, et al. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide[J]. Scientific Reports, 2013, 3:3534. |
[4] | CHEN J, LI C, SHI G. Graphene materials for electro-chemical capacitors[J]. The Journal of Physical Chemistry Letters, 2013, 4(8):1244-1253. |
[5] | SHUKLA A K, BANERJEE A, RAVIKUMAR M K, et al. Electrochemical capacitors:Technical challenges and prognosis for future markets[J]. Electrochimica Acta, 2012, 84:165-173. |
[6] | HALL P J, MIRZAEIAN M, FLETCHER S I, et al. Energy storage in electrochemical capacitors:Designing functional materials to improve performance[J]. Energy & Environmental Science, 2010, 3(9):1238-1251. |
[7] | LARGEOT C, PORTET C, CHMIOLA J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9):2730-2731. |
[8] | AROF A K, SHUHAIMI N E A, ALIAS N A, et al. Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC)[J]. Journal of Solid State Electrochemistry, 2010, 14(12):2145-2152. |
[9] | SIMON P, GOGOTSI Y, DUNN B. Where do batteries end and supercapacitors begin[J]. Science, 2014, 343(6176):1210-1211. |
[10] | ZHANG H, WANG K, ZHANG X, et al. Self-generating graphene and porous nanocarbon composites for capacitive energy storage[J]. Journal of Materials Chemistry A, 2015, 3(21):11277-11286. |
[11] | JI H, ZHAO X, QIAO Z, et al. Capacitance of carbon-based electrical double-layer capacitors[J]. Nature Communications, 2014, 5(2):3317. |
[12] | CONWAY B E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage[J]. Journal of the Electrochemical Society, 1991, 138(6):1539-1548. |
[13] | LI X, WEI B. Supercapacitors based on nanostructured carbon[J]. Nano Energy, 2013, 2(2):159-173. |
[14] | ZHANG H, ZHANG L, CHEN J, et al. One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors[J]. Journal of Power Sources, 2016, 315:120-126. |
[15] | SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11):845-854. |
[16] | JI Q Q, GUO P Z, ZHAO X S. Preparation of chitosan-based porous carbons and their application as electrode materials for supercapacitors[J]. Acta Physico-Chimica Sinica, 2010, 26(5):1254-1258. |
[17] | LIU M, ZHENG H, CHEN J, et al. Chitosan-chitin nanocrystal composite scaffolds for tissue engineering[J]. Carbohydrate Polymers, 2016, 152:832-840. |
[18] | CONWAY B E, PELL W G. Power limitations of super-capacitor operation associated with resistance and capacitance distribution in porous electrode devices[J]. Journal of Power Sources, 2002, 105(2):169-181. |
[19] | PELL W G, CONWAY B E. Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour[J]. Journal of Electroanalytical Chemistry, 2001, 500(1):121-133. |
[20] | ZHANG H, ZHANG X, LIN H, et al. Graphene and maghemite composites based supercapacitors delivering high volumetric capacitance and extraordinary cycling stability[J]. Electrochimica Acta, 2015, 156:70-76. |
[21] | ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9):2520-2531. |
[22] | 顾善群, 李金焕, 王海洋, 等. 石墨烯/纳米银复合材料的制备、微结构及其导电性能[J]. 复合材料学报, 2015, 32(4):1061-1066. GU S Q, LI J H, WANG H Y, et al. Preparation of graphene/nano-Ag composite, microstructure and electrical property[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1061-1066(in Chinese). |
[23] | 欧忠星, 郑玉婴, 肖东升, 等. 功能化改性还原氧化石墨烯-碳纳米管/热塑性聚氨酯复合材料膜的制备及性能[J]. 复合材料学报, 2016, 33(3):486-494. OU Z X, ZHENG Y Y, XIAO D S, et al. Preparation and properties of functional modification reduced graphene oxide-carbon nanotubes/thermoplastic polyurethane composite films[J]. Acta Materiae Compositae Sinica, 2016, 33(3):486-494(in Chinese). |
[24] | AROF A K, MAJID S R. Electrical studies on chitosan based proton conductors and application in capacitors[J]. Molecular Crystals and Liquid Crystals, 2008, 484(1):107/ |
[25] | -116/ |
[26] | YAMAGATA M, SOEDA K, IKEBE S, et al. Chitosan-based gel electrolyte containing an ionic liquid for high-performance nonaqueous supercapacitors[J]. Electrochimica Acta, 2013, 100:275-280. |
[27] | American Society for Testing and Materials. Standard test method for plastics:Dynamic mechanical properties:In compression:ASTM D5024-15[S]. West Conshohocken:ASTM International, 2015. |
[28] | ZHANG Y Q, XUE C H, XUE Y, et al. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction[J]. Carbohydrate Research, 2005, 340(11):1914-1917. |
[29] | ALBANNA M Z, BOU-AKL T H, WAL-TERS H L, et al. Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers[J]. Journal of the Mechanical Behavior of Bio-Medical Materials, 2012, 5(1):171-180. |