|
- 2017
双马来酰亚胺共聚改性及性能
|
Abstract:
采用侧甲基双马来酰亚胺(T-BMI)对4,4'-二苯甲烷型双马来酰亚胺(BDM)进行共聚改性制备一种高韧性基体树脂。研究结果表明:T-BMI-BDM改性共聚体系的力学性能得到明显的改善,当T-BMI与BDM的摩尔比为1∶1时,冲击强度和断裂韧性G IC分别达到17.2 kJ/m2和316 J/m2,比改性前分别提高了66.3%和39.8%;共聚体系的拉伸强度和弯曲强度分别达到101.0 MPa和165.0 MPa,比改性前分别提高了12.2%和2.5%;DMA和TG分析结果表明,T-BMI-BDM改性共聚体系的热性能没有明显下降,玻璃化转变温度和5%热失重温度分别达到了267.2℃和403.7℃;通过改性共混体系DSC曲线分析确定其固化工艺条件为160℃×2 h+180℃×2 h+200℃×2 h+230℃×4 h,通过改性共混体系黏度-温度和黏度-时间曲线分析确定其流变性能适用于复合材料RTM成型工艺,适宜的注射温度为125~140℃。 T-typed bismaleimide (T-BMI) was used to blend with 4, 4'-bismaleimidodiphenylmethyene (BDM) for preparing a matrix resin with high toughness. The results show that T-BMI has great effect on improving the mechanical performances of the matrix resin. With the same mole between T-BMI and BDM, the impact strength and fracture toughness (GIC value) of T-BMI-BDM reach up to 17.2 kJ/m2 and 316 J/m2, which are increased by 66.3% and 39.8% than before modifying, respectively. Furthermore, the tensile strength and flexural strength are up to 101.0 MPa and 165.0 MPa, they are improved by 12.2% and 2.5% than before modifying, respectively. The analysis of DMA and TG show that the heat-resistance and thermal stabilities of the copolymerization system are not significantly influenced by introduced T-BMI. The glass transition temperature and 5% mass loss temperature are 267.2℃ and 403.7℃, respectively. Cure condition of the matrix resin determined by DSC curves are 160℃×2 h+180℃×2 h +200×2 h+230℃×4 h. Rheological property determined by viscosity-temperature and viscosity-time curves indicates that it can be suitable for RTM process, and resin injection temperature should be selected in the range of 125℃ to 140℃.
[1] | FACHE B, MEOUCHE W, PHAM Q T, et al. New adhesives:Bismaleimide liquid crystals containing polymethylene flexible groups and aramide-arylate mesogen groups[J]. International Journal of Adhesion & Adhesives, 2013, 42:51-59. |
[2] | RIDER A N, BAKER A A, WANG C H, et al. An enhanced vacuum cure technique for on-aircraft repair of carbon-bismaleimide composites[J]. Applied Composite Materials, 2011, 18(3):231-251. |
[3] | 梁国正, 顾媛娟. 双马来酰亚胺树脂[M]. 北京:化学工业出版社, 1997. LIANG G Z, GU Y J. Bismaleimide resin[M]. Beijing:Chemistry Industry Press, 1997 (in Chinese). |
[4] | JI L, GU A, LIANG G, et al. Novel modification of bismaleimide-triazine resin by reactive hyperbranched polysiloxane[J]. Journal of Materials Science, 2010, 45(7):1859-1865. |
[5] | MARKS M J, VERGHESE N E, O'CONNELL C L, et al. The effects of monoepoxide chain termination and their derived soluble fractions on the structure-property relationships of controlled epoxy networks[J]. Journal of Polymer Science Part B:Polymer Physics, 2009, 47(1):72-79. |
[6] | HOPEWELL J L, GEORGE G A, HILL D J T. Quantitative analysis of bismaleimide-diamine thermosets using near infrared spectroscopy[J]. Polymer, 2000, 41(23):8221-8229. |
[7] | QIN H, MATHER P T, BAEK J B, et al. Modification of bisphenol-A based bismaleimide resin (BPA-BMI) with an allyl-terminated hyperbranched polyimide (AT-PAEKI)[J]. Polymer, 2006, 47(8):2813-2821. |
[8] | WANG D Z, LIU P, LIU C W, et al. Synthesis and characterization of multifunctional propenyl-endcapped aromtic co-monomers and their use as bismaleimide modifiers[J]. Polymers for Advanced Technologies, 2016, 27(2):185-194. |
[9] | QU C Y, LIU P, LIU C W, et al. A study of co-reaction mechanism and properties of propenyl-substituted monomer/bismaleimide system[J]. High Performance Polymers, 2016, 28(10):1172-1182. |
[10] | ⅡJIMA T, OHNISHI K, FUKUDA W, et al. Modification of bismaleimide resin by poly (propylene phthalate), poly (butylene phthalate) and related (co) polyesters[J]. Polymer International, 1998, 45(4):403-413. |
[11] | WILKINSON S P, WARD T C, MCGRATH J E. Effect of thermoplastic modifier variables on toughening a bismaleimide matrix resin for high-performance composite materials[J]. Polymer, 1993, 34(4):870-884. |
[12] | TAKEDA S, KAKIUCHI H. Toughening bismaleimide resins by reactive liquid rubbers[J]. Journal of Applied Polymer Science, 1988, 35(5):1351-1366. |
[13] | TAKEDA S, AKIYAMA H, KAKIUCHI H. Synthesis and properties of bismaleimide resins containing ether bonds[J]. Journal of Applied Polymer Science, 1988, 35(5):1341-1350. |
[14] | 全国纤维增强塑料标准化技术委员会. GB/T 2567-2008树脂浇注体性能试验方法[S]. 北京:中国标准出版社, 2008. National Technical Committee on Fiber Reinforced Plastic of Standardization Administration of China. GB/T 2567-2008 Test methods for properties of resin casting body[S]. Beijing:China Standard Press, 2008 (in Chinese). |
[15] | American National Standards Institute. ASTM D5045-2007 Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials[S]. American Society of Testing Materials, 2007. |
[16] | LIU F, LI W W, WEI L H, et al. Bismaleimide modified bispropargyl ether bisphenol A resin:Synthesis, cure, and thermal properties[J]. Journal of Applied Polymer Science, 2006, 102(4):3610-3615. |
[17] | 段跃新, 张宗科, 梁志勇, 等. BMI树脂化学流变模型及RTM工艺窗口预报研究[J].复合材料学报, 2001, 18(3):30-33. DUAN Y X, ZHANG Z K, LIANG Z Y, et al. Rheological model and prediction of processing windows of BMI resin for RTM processes[J]. Acta Materiae Compositae Sinica, 2001, 18(3):30-33 (in Chinese). |
[18] | HU J, GU A, LIANG G, et al. Preparation and properties of mesoporous silica/bismaleimide/diallylbisphenol compo-sites with improved thermal stability, mechanical and dielectric properties[J]. Express Polymer Letters, 2011, 5(6):555-568. |
[19] | HWANG H, LI C, WANG C. Synthesis and properties of bismaleimide resin containing dicyclopentadiene or dipentene. VI[J]. Polymer International, 2006, 55(11):1341-1349. |
[20] | JI L, GU A, LIANG G, et al. Novel modification of bismaleimide-triazine resin by reactive hyperbranched polysiloxane[J]. Journal of Materials Science, 2010, 45(7):1859-1865. |
[21] | ZHOU J, YAO Z, ZHEN W, et al. Dielectric and thermal performances of the graphene/bism-aleimide/2, 2'-diallylbisphenol a composite[J]. Materials Letters, 2014, 124:155-157. |
[22] | YU Q, CHEN P, WANG L. Degradation in mechanical and physical properties of carbon fiber/bismaleimide composite subjected to proton irradiation in a space environment[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2013, 298(2):42-46. |
[23] | LIU P, QU C Y, LIU C W, et al. High-performance bismaleimide resins with low cure temperature for resin transfer molding process[J]. High Performance Polymers, DOI:10.1177/0954008316642278. |
[24] | WEI G, SUE H J. Fracture mechanisms in preformed polyphenylene oxide particle-modified bismaleimide resins[J]. Journal of Applied Polymer Science, 1999, 74(10):2539-2545. |
[25] | ABBATE M, MARTUSCELLI E, MUSTO P, et al. A novel reactive liquid rubber with maleimide end groups for the toughening of unsaturated polyester resins[J]. Journal of Applied Polymer Science, 1996, 62(12):2107-2119. |
[26] | QU C, ZHAO L W, WANG D Z, et al. Bis[4-(4-maleimidephen-oxy)phenyl]propane/N, N-4, 4'-bismaleimidodiphenylmethyene blend modified with diallyl bisphenol A[J]. Journal of Applied Polymer Science, 2014, 131(12):40395. |
[27] | HUANG F, HUANG F, ZHOU Y, et al. Nanocomposites of a bismaleimide resin with octaphenylsilsesquioxane or nano-SiO2[J]. Polymer Composites, 2011, 32(1):125-130. |
[28] | YAN H X, NING R C, LIANG G, et al. The effect of silane coupling agent on the sliding wear behavior of nanometer ZrO2/bismaleimide composites[J]. Journal of Materials Science, 2007, 42(3):958-965. |
[29] | KURAHATTI R V, SURENDRANATHAN A O, SRIVASTAVA S, et al. Role of zirconia filler on friction and dry sliding wear behaviour of bismaleimide nanocomposites[J]. Materials & Design, 2011, 32(5):2644-2649. |
[30] | 石凤, 段跃新, 梁志勇, 等. RTM专用双马来酰亚胺树脂体系化学流变特性[J].复合材料学报, 2006, 23(1):56-62. SHI F, DUAN Y X, LIANG Z Y, et al. Rheological behavior of a bismaleimide resin system for RTM process[J]. Acta Materiae Compositae Sinica, 2006, 23(1):56-62 (in Chinese). |