全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

醇辅助还原法可控制备Cu@Ag核壳颗粒及其抗氧化性能
Fabrication and anti-oxidation abilities of Cu@Ag core-shell nanoparticles by polyol-assisted method

DOI: 10.13801/j.cnki.fhclxb.20160913.002

Keywords: Cu@Ag,核壳颗粒,分散剂,抗氧化,导电性能,乙二醇
Cu@Ag
,core-shell particles,dispersing agent,oxidation resistance,electrical conductivity,ethylene glycol

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了一种Ag包裹量可控制备Cu@Ag核壳颗粒的方法,其中利用乙二醇(EG)作为还原剂,AgNO3作为Ag源。探讨了不同分散剂,明胶、十六烷基三甲基溴化铵(CTAB)、聚乙烯吡咯烷酮(PVP)对Cu@Ag核壳颗粒形貌的影响,其中明胶作为分散剂时的包覆效果最佳。以明胶作为分散剂,当AgNO3浓度为0.93 mol/L时,制得了包裹均匀的Cu@Ag核壳颗粒,其压实薄膜电阻仅为1.6 Ω/sq,具有良好的导电性。通过表面Ag的包裹,Cu@Ag核壳颗粒在空气中放置4个月后,压实薄膜电阻为12.6 Ω/sq,表现出持久的抗氧化性能。醇还原法可以实现在Cu颗粒表面快捷可控地制备Ag包裹层,包覆率高,且Cu@Ag复合颗粒抗氧化性能持久,适用于工业生产。 A simple method was introduced to prepare Cu@Ag core-shell particles at room temperatureby using ethylene glycol (EG) as the reducing agent and AgNO3 as the source of Ag atom. The effects of types of dispersing agent including gelatin, cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP)on the morphology of Cu@Ag core-shell particles were studied. The results show that gelatin is the best choice as dispersing agent. When the concentration of AgNO3 is 0.93 mol/L, the copper particles are completely covered with Ag nanoparticles on the surface with gelatin as dispersing agent. Because of the protection of Ag nanoparticles on the surface of Cu particles, the sheet resistance of compacted film based on Cu@Ag core-shell nanoparticles is as low as 1.6 Ω/sq. After being exposed in air for 4 months, the sheet resistance of the Cu@Ag core-shell particles is a little bit higher as 12.6 Ω/sq, which shows an enduring oxidation resistance of Cu@Ag core-shell particles.The silver can be efficiently achieved over the Cu particles under control and shows better anti-oxidation abilities than Cu particles with enduring oxidation resistance. This is a remarkable improvement for the electrical conductivity of Cu particles, which lays the foundations for the application of Cu@Ag core-shell particles in industrial production. 国家自然科学基金青年基金(11204082);上海市自然基金(16ZR1410700);上海市闵行区企校合作项目(2015MH218);华东师范大学研究生科研创新实践项目(YJSKC2015-32)

References

[1]  CHEN K T, RAY D, PENGY H, et al. Preparation of Cu@Ag core-shell particles with their anti-oxidation and antibacterial properties[J]. Current Applied Physics, 2013, 13: 1496-1501.
[2]  PENG Y, YANG C, CHEN K, et al. Study on synthesis of ultrafine Cu-Ag core-shell powders with high electrical conductivity[J]. Applied Surface Science, 2012, 263: 38-44.
[3]  XU X R, LUO X J, ZHUANG H R, et al. Electroless silver coating on fine copper powder and its effects on oxidation resistance[J]. Material Letter, 2003, 57: 3987-3991.
[4]  CHOI E B, LEE J H. Ethylene glycol-based Ag plating for the wet chemical fabrication of one micrometer Cu/Ag core/shell particles[J]. Journal of Alloys and Compounds, 2015, 643: S231-S235.
[5]  郭少波, 马剑琪, 兰阿峰, 等. 核-壳纳米Ag@ZrO2复合材料的制备及其抑菌性能[J]. 复合材料学报, 2016, 33(4): 821-826. GUO S B, MA J Q, LAN A F, et al. Preparation and its antibacterial properties of core-shell nano Ag@ZrO2 composite[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 821-826 (in Chinese).
[6]  THATAI S, KHURANA P, BOKEN J, et al.Nanoparticles and core-shell nanocomposite based new generation water remediation materials and analytical techniques[J]. Microche-mical Journal, 2014, 116: 62-76.
[7]  KIM C K, LEE G J, LEE M K.A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics[J]. Powder Technology, 2014, 263: 1-6.
[8]  刘艳娥.分散剂在纳米银制备中的影响[J].山东化工, 2015, 44: 90-97. LIU Y E. The impact of the dispersant in the preparation of silver nanoparticles[J]. Shandong Chemical Industry, 2015, 44: 90-97 (in Chinese).
[9]  何辉, 周家霆, 董红建, 等. PVP 还原制备花朵状银纳米颗粒[J].黄金, 2013, 34(1): 5-9. HE H, ZHOU J T, DONG H J, et al. Synthesis of flower-like silver nanoparticles by polyvinyl pyrrolidone(PVP) reduction[J]. Gold, 2013, 34(1): 5-9 (in Chinese).
[10]  王爱丽, 殷恒波, 任敏, 等.不同有机官能团对室温下纳米银形貌控制合成的影响[J].贵金属, 2006, 27(2): 27-34. WANG A L, YIN H B, REN M, et al. Effects of different organic functional groups on morphology-controlled synthesis of silver nanoparticles at room temperature[J]. Precious Metals, 2006, 27(2): 27-34 (in Chinese).
[11]  ZHAO J, ZHANG D M, ZHAO J. Fabrication of Cu-Ag core-shell bimetallic superfine powders by eco-friendly reagents and structures characterization[J]. Journal of Solid State Chemistry, 2011, 184: 2339-2344.
[12]  MANCIE V, ROUSSE-BERTRAND C, DILLE J, et al. Sono and electrochemical synthesis and characterization of copper core-silver shell nanoparticles[J]. Ultrasonics Sonochemistry, 2010, 17: 690-696.
[13]  巩黄玲, 黄明智.明胶表面活性剂的进展[J].明胶科学与技术, 2000, 20(1): 1-8. GONG H L, HUANG M Z. Development of gelatin as surfactant[J]. The Science and Technology of Gelatin, 2000, 20(1): 1-8 (in Chinese).
[14]  JUN D S, LEE H M, KANG Y C, et al. Air-stable silver-coated copper particles of sub-micrometer size[J]. Journal of Colloid and Interface Science, 2011, 364: 574-581.
[15]  马青山, 宣天鹏. 银包铜粉的制备工艺及研究进展[J]. 稀有金属快报, 2007, 26(8): 10-14. MA Q S, XUAN T P. Preparation technology and study progress of silver-coated copper powder[J]. Rare Metal Letters, 2007, 26(8): 10-14 (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133