|
- 2017
苎麻短纤维层间增韧碳纤维/环氧树脂复合材料
|
Abstract:
采用热压机层压成型工艺制备了苎麻短纤维(SRF)层间增韧碳纤维/环氧树脂(CF/EP)复合材料层压板,研究了SRF的长度、面密度及其表面偶联处理对CF/EP复合材料层间断裂韧性的影响,并进一步研究了SRF的铺入对复合材料弯曲、拉伸性能的影响。研究结果表明,层间SRF的铺入明显改善了CF/EP复合材料的I型和II型层间断裂韧性(GIC和 GIIC),当表面偶联处理的纤维长度为6 mm、面密度为12 g·m-2时,增韧效果最佳,GIC由497.48 J·m-2 增加到667.54 J·m-2,提高了34.24%;GIIC由508.52 J·m-2 增加到862.11 J·m-2,提高了69.54%。此外,铺入SRF对复合材料的弯曲、拉伸性能也有一定程度的提高。通过SEM观察发现,SRF的增韧机制与其层间桥联以及裂纹扩展过程中从基体中拔出与劈裂等现象有关。 The interlayer-toughed carbon fiber/epoxy resin (CF/EP) composite laminates with short ramie fiber (SRF) were made through hot press laminated molding process. The interlaminar fracture toughness, the flexsural properties and tensile properties of the CF/EP composites with different SRF lengths, surface densities and surface coupling treatment were investigated. The results indicate that the insert of SRF significantly improves the CF/EP composites' mode I and mode Ⅱ interlaminar fracture toughness (GIC and GⅡC), and the best interlaminar fracture toughness property can be obtained when the length of SRF is 6 mm and the surface density of SRF is 12 g·m-2. GIC of the composites improves from 497.48 J·m-2 to 667.54 J·m-2, which increases by 34.24%, and GⅡC of the composites improves from 508.52 J·m-2 to 862.11 J·m-2, which increases by 69.54%. In addition, the flexural pro-perties and tensile properties of the composites are also slighted improved with SRF. Through the observation of scanning electron microscope (SEM), it can be obtained that the toughening mechanism is related to SRF' bridging and pulling out and splitting in the process of crack propagation. 西南科技大学科研储备项目(13zxpt08)
[1] | LEE S H, NOGUCHI H, KIM Y B, et al. Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: Part Ⅱ—Mode I[J]. Journal of Composite Materials, 2002, 36(18): 2169-2181. |
[2] | HUANG B Z, HU X Z, LIU J. Modelling of inter-laminar toughening from chopped Kevlar fibers[J]. Composites Science and Technology, 2004, 64(13): 2165-2175. |
[3] | 白龙斌, 张彦飞, 杜瑞奎, 等. 微米Al2O3层间增韧 EP/CF复合材料性能研究[J]. 工程塑料应用, 2015, 41(2): 30-34. BAI Longbin, ZHANG Yanfei, DU Ruikui, et al. Study on the properties of interlayer-toughed epoxy/carbon fiber composites with micron-Al2O3[J]. Engineering Plastics Application, 2015, 41(2): 30-34 (in Chinese). |
[4] | HOJO M, MATSUDA S, TANAKA M, et al. Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates[J]. Composites Science & Technology, 2006, 66(5): 665-675. |
[5] | LEE S H, NOGUCHI H, KIM Y B, et al. Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: Part I—Mode Ⅱ[J]. Journal of Composite Materials, 2002, 36(18): 2153-2168. |
[6] | GAO F, JIAO G, LU Z, et al. Mode Ⅱ delamination and damage resistance of carbon/epoxy composite laminates interleaved with thermoplastic particles[J]. Journal of Composite Materials, 2007, 41(1): 111-123. |
[7] | 李刚, 王秉晖, 冯广辉, 等. 碳纤维复合材料的纳米纤维膜层间增韧新体系研究[C]//杜善义. 第十五届全国复合材料学术会议论文集(上册). 北京:国防工业出版社, 2008: 466-470. LI Gang, WANG Binghui, FENG Guanghui, et al. Study of nanofibrous membranes interlayer toughening carbon fiber composites[C]//DU Shanyi. The Proceedings of the 15th National Academic Conference of Composites (Volume 1). Beijing: National Defence Industry Press, 2008: 466-470 (in Chinese). |
[8] | SOHN M S, HU X Z. Delamination behavior of carbon fibre/epoxy composite laminates with short fibre reinforcement[J]. Scripta Metallurgica Materialia, 1994, 30(11): 1461-1472. |
[9] | HILLERMEIER R W, SEFERIS J C. Interlayer toughening of resin transfer molding composites[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(5): 721-729. |
[10] | YUN N G, WON Y G, KIM S C. Toughening of carbon fiber/epoxy composite by inserting polysulfone film to form morphology spectrum[J]. Polymer, 2004, 45(20): 6953-6958. |
[11] | 高峰, 矫桂琼, 宁荣昌, 等. 层间颗粒增韧复合材料层压板的Ⅱ型层间断裂韧性[J]. 西北工业大学学报, 2005, 23(2): 184-188. GAO Feng, JIAO Guiqiong, NING Rongchang, et al. Mode Ⅱ fracture tougness of thermoplastic-particle interlayered composite laminates[J]. Joural of Northwestern Polytechnical University, 2005, 23(2): 184-188 (in Chinese). |
[12] | 范雨娇, 顾轶卓, 邓火英, 等. 碳纳米管加入方式对碳纤维/环氧树脂复合材料层间性能的影响[J]. 复合材料学报, 2015, 32(2): 332-340. FAN Y J, GU Y Z, DENG H Y, et al. Effect of adding method of carbon nanotube on interlaminar property of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 332-340 (in Chinese). |
[13] | 崔崧, 黄宝宗, 张立洲. 层间短纤维的桥联和增韧分析[J]. 计算力学学报, 2004, 21(2): 216-221. CUI Song, HUANG Baozong, ZHANG Lizhou. Analysis of interlaminar short-fiber bridging and toughening[J]. Chinese Journal of Computational Mechanics, 2004, 21(2):216-221 (in Chinese). |
[14] | 李英梅, 刘军, 黄宝宗. 短纤维夹层对 I型层间断裂韧性的影响[J]. 东北大学学报(自然科学版), 2002, 23(11): 1119-1122. LI Yingmei, LIU Jun, HUANG Baozong. Effect of short chopped fibers on mode I delamination toughenss[J]. Journal of Norheastern University(Natural Science), 2002, 23(11): 1119-1122 (in Chinese). |
[15] | CHOLAKE S T, MORAN G, JOE B, et al. Improved Mode I fracture resistance of CFRP composites by reinforcing epoxy matrix with recycled short milled carbon fibre[J]. Construction and Building Materials, 2016, 111: 399-407. |
[16] | SUN Z, JEYARAMAN J, SUN S, et al. Carbon-fiber aluminum-foam sandwich with short aramid-fiber interfacial toughening[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(11): 2059-2064. |
[17] | SUN Z, SHI S, HU X, et al. Short-aramid-fiber toughening of epoxy adhesive joint between carbon fiber composites and metal substrates with different surface morphology[J]. Composites Part B: Engineering, 2015, 77: 38-45. |
[18] | LI Y, WANG D, MA H. Improving interlaminar fracture toughness of flax fiber/epoxy composites with chopped flax yarn interleaving[J]. Science China Technological Sciences, 2015, 58(10): 1745-1752. |
[19] | 孙林. 苎麻纤维物理性能的研究[J]. 化纤与纺织技术, 2004 (2): 20-22. SUN Lin. Research on physical performance of ramie fiber[J]. Chemical Fiber & Textile Technology, 2004(2): 20-22 (in Chinese). |
[20] | 温变英, 李晓媛, 张扬. 苎麻纤维/聚乳酸复合材料在不同pH环境下的水解行为[J]. 复合材料学报, 2015, 32(1): 54-60. WEN B Y. LI X Y, ZHANG Y. Hydrolysis behaviors of ramie fiber/polyactic acid composites under different pH conditions[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 54-60 (in Chinese). |
[21] | 中国航空工业总公司. 碳纤维复合材料层合板型层间断裂韧性 GIC试验方法: HB 7402—96[S]. 北京:中国航空工业总公司, 1996. China Aviation Industry Corporation. Test method for mode I interlaminar fracture toughness of carbon fiber-reinforced po-lymer matrix composites: HB 7402—96[S]. Beijing: China Aviation Industry Corporation, 1996 (in Chinese). |
[22] | 中国航空工业总公司.碳纤维复合材料层合板Ⅱ型层间断裂韧性 G ⅡC试验方法: HB 7403—96[S].北京:中国航空工业总公司, 1996. China Aviation Industry Corporation. Test method for mode Ⅱ interlaminar fracture toughness of carbon fiber-reinforced polymer matrix composites: HB 7403—96[S]. Beijing: China Aviation Industry Corporation, 1996 (in Chinese). |
[23] | 中华人民共和国国家质量监督检验总局. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S].北京:中国标准出版社, 2005. General Administrationm of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Fiber-reinforced plastic composites—Determination of flexural properties: GB/T 1449—2005[S]. Beijing: Standards Press of China, 2005 (in Chinese). |
[24] | 中华人民共和国国家质量监督检验总局. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京:中国标准出版社, 2005. General Administrationm of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Fiber-reinforced plastic composites—Determination of tensile properties: GB/T 1447—2005[S]. Beijing: Standards Press of China, 2005 (in Chinese). |