|
- 2017
考虑泊松效应的材料/结构一体化设计方法
|
Abstract:
为实现含有不同泊松比组分复合材料的优化设计,并考虑宏观结构及复杂的边界条件,提出了考虑泊松效应的材料/结构一体化设计方法,其显著特征在于不同组分材料中引入了泊松比插值,假设宏观结构由周期性排列的复合材料组成,复合材料含两种各向同性且泊松比不同的组分材料,以静态问题中柔顺度最小化或动态问题中特征值最大化为目标以及宏微观体积比为约束建立了拓扑优化模型。采用均匀化理论预测了复合材料等效性能,推导了目标函数对宏微观密度变量的敏度表达式。分别采用密度过滤和敏度过滤来消除宏微观拓扑优化中的不稳定性现象。采用优化准则法分别更新宏观、微观密度变量,考察了微观体积比和组分材料泊松比参数对优化结果的影响。三维数值算例结果表明所提出的一体化方法具有可行性和优越性。 For optimal design of the composite composed of material with different Poisson's ratios, a concurrent design method for microstructures of composites and macrostructures by considering the Poisson effect was presented, when considering the macrostructure and complicated boundary conditions. A distinctive feature lies in the interpolation of Poisson's ratios for different constituent phases. The macrostructures were supposed to be constructed by periodic base composites which contains two isotropic constituent phases with distinct Poisson's ratios. The topological optimization model was established where the system compliance was minimized in static problems or the eigenvalue was maximized in dynamic problems and the macro and micro-scale volume fraction was used as constraints. The effective properties of the composites were calculated through the homogenization theory. Sensitivities on macro-and micro-scales level were derived. Density filter and sensitivity filter schemes were adopted to eliminate the instabilities in macro-and micro-scale topology optimization, respectively. The optimality criteria method was used to update both the macro-and micro-scale densities. The effect of the micro-scale volume fraction and Poisson's ratio of the constitute phases on topological results was investigated. Several 3D illustrative examples were presented to demonstrate the effectiveness and advantage of the proposed concurrent design approach. 国家自然科学基金(11202078;51405123);北京市自然科学基金(3143025);中央高校基本科研业务费专项基金(2017MS077)
[1] | CLAUSEN A, WANG F, JENSEN J S, et al. Topology optimized architectures with programmable Poisson's ratio over large deformations[J]. Advanced Materials, 2015, 27(37): 5523-5527. |
[2] | REN X, SHEN J, GHAEDIZADEH A, et al. Experiments and parametric studies on 3D metallic auxeticmetamaterials with tuneable mechanical properties[J]. Smart Materials & Structures, 2015, 24(9): 095016. |
[3] | COELHO P G, FERNANDES P R, GUEDES J M, et al. A hierarchical model for concurrent material and topology optimisation of three-dimensional structures[J]. Structural and Multidisciplinary Optimization, 2008, 35(2): 107-115. |
[4] | 阎军, 刘岭, 刘晓峰, 等. 考虑尺寸效应的模块化结构两层级优化设计[J]. 力学学报, 2010, 42(2): 268-274. YAN J, LIU L, LIU X F, et al. Concurrent hierarchical optimization for structures composed of modules considering size effects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 268-274 (in Chinese). |
[5] | LIU L, YAN J, CHENG G. Optimum structure with homogeneous optimum truss-like material[J]. Computers & Structures. 2008, 86(13-14):1417-1425. |
[6] | NIU B, YAN J, CHENG G. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency[J]. Structural and Multidisciplinary Optimization, 2009, 39(2):115-132. |
[7] | YAN J, CHENG G, LIU L. A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials[J]. International Journal for Simulation and Multidisciplinary Design Optimization, 2008, 2(4):259-266. |
[8] | 刘远东, 尹益辉, 郭中泽. 尺度关联的微结构构型与排布的材料/结构动力学设计[J]. 复合材料学报, 2011, 28(4):180-184. LIU Y D, YIN Y H, GUO Z Z. Dynamic design associating materials and structures with scale-coupled effect[J]. Acta Materiae Composite Sinica, 2011, 28(4): 180-184 (in Chinese). |
[9] | XU B, HUANG X, XIE Y M. Two-scale dynamic optimal design of composite structures in the time domain using equivalent static loads[J]. Composite Structures, 2016, 142: 335-345. |
[10] | XU B, HUANG X, ZHOU S W, et al. Concurrent topological design of composite thermoelastic macrostructure and microstructure with multi-phase material for maximum stiffness[J].Composite Structures, 2016, 150: 84-102. |
[11] | VICENTE WM, ZUO ZH, PAVANELLO R, et al. Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 301: 116-136. |
[12] | ZHANG W, SUN S. Scale-related topology optimization of cellular materials and structures[J]. International Journal for Numerical Methods in Engineering, 2006, 68(9): 993-1011. |
[13] | XIA L, BREITKOPF P. Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 278(7): 524-542. |
[14] | XIA L, BREITKOPF P. A reduced multiscale model for nonlinear structural topology optimization[J]. Computer Me-thods in Applied Mechanics and Engineering, 2014, 280: 117-134. |
[15] | XIA L, BREITKOPF P. Recent advances on topology optimization of multiscale nonlinear structures[J]. Archives of Computational Methods in Engineering, 2017, 24(2): 227-249. |
[16] | LIU B, ZHANG L, GAO H. Poisson ratio can play a crucial role in mechanical properties of biocomposites[J]. Mechanics of Materials, 2006, 38(12): 1128-1142. |
[17] | SIGMUND O. Materials with prescribed constitutive parameters—An inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17): 2313-2329. |
[18] | SIGMUND O, TORQUATO S. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(6): 1037-1067. |
[19] | CADMAN J E, ZHOU S, CHEN Y, et al. On design of multi-functional microstructural materials[J]. Journal of Materials Science, 2013, 48(1): 51-66. |
[20] | RODRIGUES H, GUEDES J M, BENDSOE MP. Hierarchical optimization of material and structure[J]. Structural and Multidisciplinary Optimization, 2002, 24(1): 1-10. |
[21] | 刘远东, 尹益辉, 郭中泽. 静动态力学条件下多孔金属的材料/结构多级优化设计研究[J]. 中国科学:技术科学, 2012, 42(10): 1172-1178. LIU Y D, YIN Y H, GUO Z Z. Static and dynamic design based on hierarchical optimization for materials and structure of porous metals[J]. Scientia Sinica(Technologica), 2012, 42(10): 1172-1178 (in Chinese). |
[22] | DENG J, YAN J, CHENG G. Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material[J]. Structural and Multidisciplinary Optimization, 2013, 47(4): 583-597. |
[23] | GUO X, ZHAO X, ZHANG W, et al. Multi-scale robust design and optimization considering load uncertainties[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 994-1009. |
[24] | HUANG X, ZHOU S W, XIE Y M, et al. Topological optimization for microstructures of cellular materials and compo-sites for macrostructures[J]. Computational Materials Science, 2013, 37: 397-407. |
[25] | ZUO Z H, HUANG X, RONG J H, et al. Multi-scale design of composite materials and structures for maximum natural frequencies[J]. Materials & Design, 2013, 51: 1023-1034. |
[26] | YAN X, HUANG X, ZHA Y, et al. Concurrent topology optimization of structures and their composite microstructures[J]. Computers & Structures, 2014, 133(3): 103-110. |
[27] | YAN X, HUANG X, SUN G, et al. Two-scale optimal design of structures with thermal insulation materials[J]. Composite Structures, 2015, 120: 358-365. |
[28] | XU B, JIANG J S, XIE Y M. Concurrent design of compo-site macrostructure and multi-phase material microstructure for minimum dynamic compliance[J]. Composite Structures, 2015, 128: 221-233. |
[29] | XU B, XIE Y M. Concurrent design of composite macrostructure and cellular microstructure under random excitations[J]. Composite Structures, 2015, 123: 65-77. |
[30] | PASTERNAK E, SHUFRIN I, DYSKIN A V. Thermal stresses in hybrid materials with auxetic inclusions[J]. Composite Structures, 2016, 138: 313-321. |
[31] | ZUO Z H, XIE Y M. Maximizing the effective stiffness of laminate composite materials[J]. Computational Materials Science, 2014, 83: 57-63. |
[32] | LONG K, DU X R, XU S Q, et al. Maximizing the effective Young's modulus of a composite material by exploiting the Poisson effect[J]. Composite Structures, 2016, 153: 593-600. |
[33] | BRUNS T E, TORTORELLI D A. Topology optimization of non-linear elastic structures and compliant mechanisms[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(26-27): 3443-3459. |
[34] | SIGMUND O, MAUTE K. Topology optimization approaches[J]. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055. |
[35] | JIA J, CHENG W, LONG K, et al. Hierarchical design of structures and multiphase material cells[J]. Computers & Structures, 2016, 165: 136-144. |
[36] | KOCER C, MCKENZIE D R, BILEK M M. Elastic properties of a material composed of alternating layers of negative and positive Poisson's ratio[J]. Materials Science and Engineering: A, 2009, 505(1): 111-115. |
[37] | SHUFRIN I, PASTERNAK E, DYSKIN AV. Hybrid materials with negative Poisson's ratio inclusions[J]. Internatio-nal Journal of Engineering Science, 2015, 89: 100-120. |
[38] | PEDERSEN N L. Maximization of eigenvalues using topology optimization[J]. Structural and Multidisciplinary Optimization, 2000, 20: 2-11. |
[39] | HUANG X, ZUO Z H, XIE Y M. Evolutionary topological optimization of vibrating continuum structures for natural frequencies[J]. Computers and Structures, 2010, 88: 357-364. |
[40] | ANDREASSEN E, ANDREASEN C S. How to determine composite material properties using numerical homogenization[J]. Computational Materials Science, 2014, 83(2): 488-495. |
[41] | SIGMUND O, MAUTE K. Sensitivity filtering from a continuum mechanics perspective[J]. Structural and Multidisciplinary Optimization, 2012, 46(4): 471-475. |
[42] | BOURDIN B. Filters in topology optimization[J]. International Journal for Numerical Methods in Engineering, 2001, 50(9): 2143-2158. |
[43] | BENDSOE M P, SIGMUND O. Topology optimization: Theory, methods and applications [M]. Berlin: Springer, 2003. |