|
- 2017
短切聚酰亚胺纤维增强可瓷化三元乙丙橡胶复合材料的制备与性能
|
Abstract:
以三元乙丙橡胶(EPDM)为基体,高岭土(Kaolin)和滑石粉(Talc)为功能填料,Al(OH)3为阻燃剂,短切聚酰亚胺纤维(PI Fiber)为增强材料,制备了不同PI纤维含量的可瓷化PI Fiber-Kaolin-Talc-Al(OH)3/EPDM(PKTA/EPDM)复合材料。研究了短切PI纤维对复合材料拉伸性能、热稳定性和微观形貌的影响,分析了短切PI纤维增强复合材料的陶瓷化机制。研究表明,短切PI纤维含量增加会导致可瓷化PKTA/EPDM复合材料拉伸性能下降,当纤维含量与EPDM质量比低于10:100时,复合材料力学性能良好。可瓷化PKTA/EPDM复合材料在800~1 100℃热解后均发生陶瓷化反应。当PI纤维与EPDM质量比为4:100~8:100时,可以有效保持复合材料高温热解后的形状尺寸稳定,并且热解产物弯曲强度在6~18 MPa之间。热分析结果表明,加入PI纤维可以提高可瓷化PKTA/EPDM复合材料的热稳定性。结合热分析和断面SEM分析表明,PI纤维热解、炭化后贯穿在EPDM裂解后的炭层中形成纤维增强炭层结构。这种纤维增强结构在复合材料热解过程中有助于获得尺寸稳定、形状完整的陶瓷产物。 The ceramifiable ethylene propylene diene monomer(EPDM) composites with different fiber contents were prepared by taking EPDM as the matrix, kaolin and talc as the functional fillers, aluminum hydroxide as the flame retardant, and the chopped polyimide(PI) fiber as the reinforcement. The effects of chopped polyimide fibers on the tensile properties, thermal stability and microstructure of ceramifiable PI fiber-Kaolin-Talc-Al(OH)3/EPDM (PKTA/EPDM)composites were investigated, and the ceramicization mechanism of chopped polyimide fiber reinforced composites was analyzed. The results show that the tensile strength of the composites decreases with the increasing of the content of chopped polyimide fibers. When the chopped PI fibers are less than 10:100 (mass ratio to EPDM), the mechanical properties of the composites are good. The ceramifiable PKTA/EPDM composites can be ceramicized after pyrolysis at 800-1 100℃. The addition of 4:100-8:100 (mass ratio to EPDM) chopped polyimide fibers can effectively keep the shape stability of the composites after pyrolysis at 800-1 100℃, and the bending strength of the ceramic products is between 6-18 MPa. The results of thermal analysis show that the thermal stability of the composites can be improved by adding the chopped polyimide fibers. The results of thermal analysis and SEM analysis indicate that the pyrolysis and carbonization of the chopped PI fibers in the char layer form the structure of fiber-reinforced char layer. The PI fiber reinforced structure contributes to obtaining the well-shaped ceramic products in the pyrolysis of the PKTA/EPDM composites. 国家自然科学基金(51003084)
[1] | ANYSZKA R, BIELINSKI D M, PEDZICH Z, et al. Influence of surface-modified montmorillonites on properties of silicone rubber-based ceramizable composites[J]. Journal of Thermal Analysis & Calorimetry, 2015, 119(1):111-121. |
[2] | JAN D, GRZEGORZ P, ZBIGNIEW P, et al. Ceramizable silicone composites destined for covers of electrical cables:Polanal, EP20140460014[P]. 2014-09-17. |
[3] | IMIELA M, ANTSZKA R, BIELINSKI D M, et al. Effect of carbon fibers on thermal properties and mechanical strength of ceramizable composites based on silicone rubber[J]. Journal of Thermal Analysis & Calorimetry, 2016, 124(1):197-203. |
[4] | ALEXANDER G, CHENG Y B, BURFORD R P, et al. Ceramifying composition for fire protection:U. S. Patent 8, 409, 479[P]. 2013-4-2. |
[5] | 黄志雄, 秦岩, 饶志龙, 等. 一种可陶瓷化高碳型聚合物基复合材料及其制备方法:103058632. A[P]. 2013-04-24. HUANG Z X, QIN Y, RAO Z L, et al. Ceramifying high carbon based polymer composites:103058632. A[P]. 2013-04-24(in Chinese). |
[6] | HANUL G, SIMON G P, CHENG Y B. Preferential orientation of muscovite in ceramifiable silicone composites[J]. Materials Science and Engineering A, 2005, 398(1-2):180-187. |
[7] | MANSOURI J, BURFORD R P, CHENG Y B, et al. Formation of strong ceramified ash from silicone-based compositions[J]. Journal of Materials Science, 2005, 40(21):5741-5749. |
[8] | MANSOURI J, WOOD C A, ROBERTS K, et al. Investigation of the ceramifying process of modified silicone-silicate compositions[J]. Journal of Materials Science, 2007, 42(15):6046-6055. |
[9] | MANSOURI J, BURFORD R P, CHENG Y B. Pyrolysis behaviour of silicone-based ceramifying composites[J]. Materials Science and Engineering A, 2006, 425(1):7-14. |
[10] | HANU L G, SIMON G P, CHENG Y B. Thermal stability and flammability of silicone polymer composites[J]. Polymer Degradation and Stability, 2006, 91(6):1373-1379. |
[11] | 孟盼, 张光武, 熊梦, 等. 玻璃料对可陶瓷化硅橡胶基复合材料耐高温性能的影响[J]. 复合材料学报, 2016, 33(10):2205-2214. MENG P, ZHANG G W, XIONG M, et al. Effect of glass frits on high-temperature resistance properties of ceramifiable silicone rubber matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(10):2205-2214(in Chinese). |
[12] | 秦岩, 饶志龙, 刘慧娟, 等. 可瓷化酚醛复合材料烧蚀隔热性能研究[J]. 玻璃钢/复合材料, 2012(S1):52-55. QIN Y, RAO Z L, LIU H J, et al. The studying of ablation and heat insulation properties of ceramifiable phenolic composite[J]. Fiber Reinforced Plastics/Composites, 2012(S1):52-55(in Chinese). |
[13] | 韩君, 吴伯麟. 在燃烧条件下塑料中可陶瓷化掺入物的探索[J]. 塑料工业, 2008(36):167-169. HAN J, WU B L. Exploration of ceramic-like flame retardant additive for plastics[J]. China Plastics Industry, 2008(36):167-169(in Chinese). |
[14] | ANYSZKA R, PEDZICH Z, BIELINSKI D M, et al. Ceramizable silicone rubber-based composites[J]. Advances in Science & Technology, 2012, 66(1):82-88. |
[15] | SHAO H, WANG T, ZHANG Q. Ceramifying fire-resistant polyethylene composites[J]. Advanced Composites Letters, 2010, 19(5):175-179. |
[16] | DI H W, DENG C, LI R M, et al. A novel EVA composite with simultaneous flame retardation and ceramifiable capacity[J]. RSC Advances, 2015, 5(63):51248-51257. |
[17] | 全国橡胶与橡胶制品标准化技术委员会. 橡胶物理和化学试验方法分析技术委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能测定:GB/T 528-2009[S]. 北京:中国标准出版社, 2009. National Rubber Standardization Technical Committee. Rubber Physical and Chemical Testing Technical Committee. Rubber, vulcanized or thermoplastic-Determination of tensile stress-strain properties:GB/T 528-2009[S]. Beijing:Standards Press of China, 2009(in Chinese). |
[18] | 张立群, 金日光, 耿海萍, 等. 短纤维橡胶复合材料强度的理论研究I:纵向拉伸强度的理论预测[J]. 复合材料学报, 1998, 15(4):89-96. ZHANG L Q, JIN R G, GENG H P, et al. Study on the theory of strength of short fiber/rubber composites I:Prediction of longitudinal tensile strength[J]. Acta Materiae Compositae Sinica, 1998, 15(4):89-96(in Chinese). |
[19] | 王修行, 张建春, 张华, 等. 纤维含量和取向对碳纤维/丁腈橡胶复合材料拉伸和摩擦性能的影响[J]. 高分子材料科学与工程, 2015, 31(8):92-95. WANG X X, ZHANG J C, ZHANG H, et al. Tensile and friction properties of carbon fiber/nitrile rubber composites:Influence of carbon fiber content and orientation[J]. Polymer Materials Science and Engineering, 2015, 31(8):92-95(in Chinese). |
[20] | 谢文峰, 李云霞, 秦岩, 等. 有机硅聚合物复合材料陶瓷化研究进展[J]. 武汉理工大学学报, 2013, 35(2):53-56. XIE W F, LI Y X, QIN Y, et al. Organic silicon polymer ceramic chemical research progress[J]. Journal of Wuhan University of Technology, 2013, 35(2):53-56(in Chinese). |
[21] | PEDZICH Z, ZIABKA M, ANYSZKA R, et al. Silicon-basing ceramizable composites containing long fibers[J]. Journal of Materials Science and Chemical Engineering, 2015, 1(5):43-48. |
[22] | HSHIEH F Y. Shielding effects of silica-ash layer on the combustion of silicones and their possible applications on the fire retardancy of organic polymers[J]. Fire and Materials, 1998, 22(2):69-76. |
[23] | RADHAKRISHNAN T S. New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis-GC studies:Thermal degradation of polydimethylsiloxanes[J]. Journal of Applied Polymer Science, 1999, 73(3):441-450. |
[24] | CAMINO G, LOMAKIN S M, LAZZARI M. Polydimethylsiloxane thermal degradation:Part 1-Kinetic aspects[J]. Polymer, 2001, 42(6):2395-2402. |
[25] | CAMINO G, LOMAKIN S M, LAGEARD M. Thermal polydimethylsiloxane degradation:Part 2-The degradation mechanisms[J]. Polymer, 2002, 43(7):2011-2015. |
[26] | DESHPANDE G, REZAC M E. Kinetic aspects of the thermal degradation of poly (dimethyl siloxane) and poly (dimethyl diphenylsiloxane)[J]. Polymer Degradation and Stability, 2002, 76(1):17-24. |
[27] | THOMAS T H, KENDRICK T C. Thermal analysis of polysiloxanes Ⅱ:Thermal vacuum degradation of polysiloxanes with different substituents on silicon and in the main siloxane chain[J]. Journal of Polymer Science:Part A-2-Polymer Physics, 1970, 8(10):1823-1830. |
[28] | AL-HASSANY Z, GENOVESE A, SHANKS R A. Fire-retardant and fire-barrier poly (vinyl acetate) composites for sealant application[J]. Express Polymer Letters, 2010, 4(2):79-93. |