全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

碳纳米管增强型功能梯度板的屈曲预测
Buckling analysis of carbon nanotube-reinforced functionally graded composite plates

DOI: 10.13801/j.cnki.fhclxb.20171227.002

Keywords: 修正偶应力理论,功能梯度材料,屈曲分析,尺度效应,碳纳米管
modified couple stress theory
,functionally graded material,buckling analysis,scale effect,carbon nanotube

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于一种新的修正偶应力理论,建立了碳纳米管(CNTs)增强型功能梯度板(CNTs/FGP)的屈曲模型。基于最小势能原理和一阶剪切变形理论,推导了该种板模型的平衡微分方程和相应的边界条件,并以四边简支方板的屈曲问题为例,讨论了材料尺度参数、CNTs的体积分数及4种不同CNTs分布形式对CNTs/FGP临界屈曲载荷的影响。结果表明:采用本文模型预测的CNTs/FGP的临界屈曲载荷总是大于传统宏观理论的预测结果,两种理论结果间的差距随着板几何尺寸的减小而逐渐增大;CNTs体积分数的少量增加,即可使板的临界屈曲载荷有明显的提升;CNTs的不同分布形式对临界屈曲载荷有显著的影响,在工程设计中应予以关注。 A novel model for buckling analysis of carbon nanotube-reinforced functionally gradedplates (CNTs/FGP) was presented based on a re-modified couple stress theory. The equilibrium equations and relevant boundary conditions were derived from principle of minimum potential energy in conjunction with the first-order shear deformation theory. A simply supported CNTs/FGP was taken as illustrative example and analytically solved. The effects of material scale parameters, volume fraction and distributional patterns of the CNTs on the critical buckling load were investigated. The numerical results indicate that the critical buckling loads predicted by the present model are always higher than those by the classical macroscopic theory, and the differences of the two theories gradually increase with decreasing of the plate's geometric size; a small amount of CNTs can tangibly enhance the critical buckling load; the patterns of CNTs in matrix have conspicuous influences on the critical buckling load, which should be considered in engineering design. 国家自然科学基金(11572204)

References

[1]  KOIZUMI M. The concept of FGM[J]. Ceramic Transactions, 1993, 34(1):3-10.
[2]  KOIZUMI M. FGM activities in Japan[J]. Composites Part B:Engineering, 1997, 28(1-2):1-4.
[3]  THAI H, CHOI D. Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory[J]. Composite Structures, 2013, 95(1):142-153.
[4]  徐娜, 李晨希, 李荣德, 等. 功能梯度材料的制备、应用及发展趋势[J]. 材料保护, 2008, 41(5):54-57. XU N, LI C X, LI R D, et al. The preparation, application and development trend of functional gradient materials[J]. Materials Protection, 2008, 41(5):54-57(in Chinese).
[5]  NATEGHI A, SALAMAT-TALAB M. Thermal effect on size dependent behavior of functionally graded micro-beams based on modified couple stress theory[J]. Composite Structures, 2013, 96:97-110.
[6]  SIMSEK M, KOCATURK T, AKBAS D. Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory[J]. Composite Structures, 2013, 95:740-747.
[7]  COLEMAN J N, KHAN U, BLAU W J, et al. Small but strong:A review of the mechanical properties of carbon nanotube-polymer composites[J]. Carbon, 2006, 44(9):1624-1652.
[8]  ESAWI A M K, FARAG M M. Carbon nanotube reinforced composites:Potential and current challenges[J]. Materials & Design, 2007, 28(9):2394-2401.
[9]  SHEN H S. Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments[J]. Composite Structures, 2009, 91(1):9-19.
[10]  SHEN H S, ZHANG C L. Thermal buckling and post-buckling behavior of functionally graded carbon nanotube reinforced composite plates[J]. Materials & Design, 2010, 31(7):3403-3411.
[11]  LEI Z X, LIEW K M, YU J L. Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method[J]. Composite Structures, 2013, 98(3):160-168.
[12]  KE L L, YANG J, KITIPORNCHAI S. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams[J]. Composite Structures, 2010, 92(3):676-683.
[13]  FLECK N A, MULLER G M, ASHBY M F, et al. Strain gradient plasticity:Theory and experiment[J]. Acta Metallurgica et Materialia. 1994, 42(2):475-487.
[14]  STOLKEN J S, EVANS A G. A microbend test method for measuring the plasticity length scale[J]. Acta Materialia, 1998, 46(14):5109-5115.
[15]  FLECK N A, HUTCHINSON J W. A phenomenological theory for strain gradient effects in plasticity[J]. Journal of the Mechanics & Physics of Solids, 1993, 41(12):1825-1857.
[16]  LAM D C C, YANG F, CHONG A C M, et al. Experiments and theory in strain gradient elasticity[J]. Journal of the Mechanics & Physics of Solids, 2003, 51(8):1477-1508.
[17]  TOUPIN R A. Elastic materials with couple-stresses[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1):385-414.
[18]  AREFI M, POURJAMSHIDIAN M, ARANI A G. Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nano-beam with FG-CNTRCs face-sheets in electro-thermal environment[J]. Applied Physics A, 2017, 123(5):323.
[19]  CHEN W, XU M, LI L. A model of composite laminated Reddy plate based on new modified couple stress theory[J]. Composite Structures, 2012, 94(7):2143-2156.
[20]  贺丹, 杨万里. 基于新修正偶应力理论的斜交铺设层合Kirchhoff板模型与尺度效应[J]. 复合材料学报, 2016, 33(6):1311-1317. HE D, YANG W L. Model of angel-ply laminate Kirchhoff plate based on new modified couple stress theory and scale effects[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1311-1317(in Chinese).
[21]  贺丹, 杨子豪. 基于一种新修正偶应力理论的平面正交各向异性功能梯度梁静弯曲模型及尺度效应[J]. 复合材料学报, 2017, 34(4):766-772. HE D, YANG Z H. Static bending model andsize effect of plane orthotropic functionally graded beam based on a new modified couple stress theory[J]. Acta Meteriae Compositae Sinica, 2017, 34(4):766-772(in Chinese).
[22]  MOHAMMADIMEHR M, SHAHEDI S, NAVI B R. Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method[J]. Proceedings of the Institution of Mechanical Engineers:Part C-Journal of Mechanical Engineering Science, 2016, 231(20):3866-3885.
[23]  SHAHRIARI B, RAVARI M R K, ZEIGHAMPOUR H. Vibration analysis of functionally graded carbon nanotube reinforced composite plates using Mindlin's strain gradient theory[J]. Composite Structures, 2015, 134:1036-1043.
[24]  MINDLIN R D. Micro-structure in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1964, 16(1):51-78.
[25]  YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids & Structures, 2002, 39(10):2731-2743.
[26]  ROKNI H, MILANI A S, SEETHALER R J. Size-dependent vibration behavior of functionally graded CNT-reinforced polymer microcantilevers:Modeling and optimization[J]. European Journal of Mechanics A:Solids, 2015, 49:26-34.
[27]  SCHAPERY R A. Thermal expansion coefficients of composite materials based on energy principles[J]. Journal of Composite Materials, 1968, 2(3):380-404.
[28]  EFRAIM E, EISENBERGERR M. Exact vibration analysis of variable thickness thick annular isotropic and FGM plates[J]. Journal of Sound & Vibration, 2007, 299(4-5):720-738.
[29]  LEI Z X, LIEW K M, YU J L. Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the elementfree kp-Ritz method[J]. Composite Structures, 2013, 98(3):160-168.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133