全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

复合材料T型加筋板筋条冲击损伤及冲击后压缩行为试验
Experimental study on stiffener impact damage and compression after impact behavior of T-stiffened composite panels

DOI: 10.13801/j.cnki.fhclxb.20171108.003

Keywords: 复合材料,加筋板,筋条冲击,门槛能量,脱粘损伤,屈曲
composite
,stiffened panel,stiffener impact,threshold energy,debonding damage,buckling

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了复合材料加筋板的筋条冲击损伤及冲击损伤对加筋板轴向压缩(CAI)行为的影响。针对T型单筋加筋板,通过落锤法从面板一侧对筋条进行5种能量水平的低速冲击。试验结果表明:冲击筋条产生的面板凹坑不易观察;当冲击能量低于筋条损伤门槛能量时,加筋板筋条无损伤出现,筋条-面板也不会发生脱粘;一旦冲击能量超过筋条损伤门槛能量,筋条的腹板会在弯曲拉伸应力作用下损伤,同时筋条-面板之间会出现严重脱粘。分别对完好和损伤试验件进行压缩试验,试验结果显示:低于门槛能量的冲击对加筋板的压缩屈曲载荷影响不大,同时只会略微降低失效载荷;而冲击造成筋条损伤后,筋条在压缩过程中会由于损伤扩展出现卸载;卸载后的筋条会对面板失去支撑,使面板的屈曲载荷降低,从而大幅地削弱加筋板的承载能力。 The purpose of this paper was to investigate the stiffener impact damage and its effect on compression after impact (CAI) behavior of T-stiffened composite panels. For single T-stringer stiffened panels, low-velocity impact was conducted on the stiffener with a drop hammer over the panel at five energy levels. The impact experiments reveal that, the panel dent is almost invisible after stiffener impact. Besides, before the impact energy reaches the threshold value, there is no damage occurring in the stiffener and stiffener-panel is not debonding either. However, once the impact energy exceeds the threshold value, the stiffener will be damaged under bending tensile stress, meanwhile the stiffener-panel will debond severely. Compression tests were performed on intact and damaged specimens. The tests show that, when no damage is induced in the stiffener, the low velocity impact has little effect on buckling behavior of the stiffened panel while the failure load is reduced slightly. However, after the stiffener is damaged by impact, the stiffener will unload due to the damage growth during the compression process. The unloading of stiffener can weaken the support for the panel and thus decreases the panel buckling load, which can dramatically reduce the load carrying capacity of the stiffened panel.

References

[1]  邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338. XING Liying, BAO Jianwen, LI Songming, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1327-1338(in Chinese).
[2]  HUTCHINSON J W. Postbuckling theory[J]. Applied Mechanics Reviews, 1970, 23:1353-1366.
[3]  ABDULHAMID H, BOUVET C, MICHEL L, et al. Experimental study of compression after impact of asymmetrically tapered composite laminate[J]. Composite Structures, 2016, 149:292-303.
[4]  ZHANG Z Y, RICHARDSON M O W. Low velocity impact induced damage evaluation and its effect on the residual flexural properties of pultruded GRP composites[J]. Composite Structures, 2007, 81(2):195-201.
[5]  SJ?GREN A, KRASNIKOVS A, VARNA J. Experimental determination of elastic properties of impact damage in carbon fibre/epoxy laminates[J]. Composites Part A:Applied Science and Manufacturing, 2001, 32(9):1237-1242.
[6]  LI N, CHEN P H. Experimental investigation on edge impact damage and compression-after-impact (CAI) behavior of stiffened composite panels[J]. Composite Structures, 2016, 138:134-150.
[7]  MAIO L, MONACO E, RICCI F, et al. Simulation of low velocity impact on composite laminates with progressive failure analysis[J]. Composite Structures, 2013, 103(103):75-85.
[8]  杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. DU Shanyi, GUAN Zhidong. Stratrgic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese).
[9]  刘璐, 关志东, 徐荣章, 等. 脱胶缺陷尺寸对复合材料加筋板屈曲及后屈曲特性的影响[J]. 复合材料学报, 2014, 31(3):749-758. LIU Lu, GUAN Zhidong, XU Rongzhang, et al. Effect of debond size on buckling and post-buckling behaviors of composite stiffened panels[J]. Acta Materiae Compositae Sinica, 2014, 31(3):749-758(in Chinese).
[10]  FENG Y, HE Y, ZHANG H, et al. Effect of fatigue loading on impact damage and buckling/post-buckling behaviors of stiffened composite panels under axial compression[J]. Composite Structures, 2016, 164:248-262.
[11]  郑晓霞, 郑锡涛, 沈真, 等. 低速冲击与准静态压痕力下复合材料层合板的损伤等效性[J]. 航空学报, 2010, 31(5):928-933. ZHENG Xiaoxia, ZHENG Xitao, SHEN Zhen, et al. Damage equivalent of composite laminates subjected to drop-weight impact and quasi-static indentation force[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):928-933(in Chinese).
[12]  GREENHALGH E, MEEKS C, CLARKE A, et al. The effect of defects on the performance of post-buckled CFRP stringer-stiffened panels[J]. Composites Part A:Applied Science and Manufacturing, 2003, 34(7):623-633.
[13]  RAIMONDO A, RICCIO A. Inter-laminar and intra-laminar damage evolution in composite panels with skin-stringer debonding under compression[J]. Composites Part B:Engineering, 2016, 94:139-151.
[14]  FAGGIANI A, FALZON B G. Predicting low-velocity impact damage on a stiffened composite panel[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(6):737-749.
[15]  RICCIO A, RICCHIUTO R, SAPUTO S, et al. Impact behaviour of omega stiffened composite panels[J]. Progress in Aerospace Sciences, 2016, 81:41-48.
[16]  饶辉, 许希武, 朱炜垚, 等. 复合材料加筋板低速冲击损伤的数值模拟[J]. 复合材料学报, 2013, 30(4):211-218. RAO Hui, XU Xiwu, ZHU Weiyao, et al. Numerical Simulation of low velocity impact damage on stiffened composite panels[J]. Acta Materiae Compositae Sinica, 2013, 30(4):211-218(in Chinese).
[17]  冀赵杰, 关志东, 黎增山. 低速冲击下复合材料加筋板的损伤阻抗性能[J]. 北京航空航天大学学报, 2016, 42(4):751-761. JI Zhaojie, GUAN Zhidong, LI Zengshan. Damage resistance property of stiffened composite panels under low-velocity impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4):751-761(in Chinese).
[18]  WANG X M, CAO W, DENG C H, et al. Experimental and numerical analysis for the post-buckling behavior of stiffened composite panels with impact damage[J]. Composite Structures, 2015, 133:840-846.
[19]  CRAVEN R, IANNUCCI L, OLSSON R. Delamination buckling:A finite element study with realistic delamination shapes, multiple delaminations and fibre fracture cracks[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(5):684-692.
[20]  TROPIS A, THOMAS M, BOUNIE J L, et al. Certification of the composite outer wing of the ATR72[J]. Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering, 1995, 209(47):327-339.
[21]  SANGA R P L, GARNIER C, PANTALé O. Finite element simulation of low velocity impact damage on an aeronautical carbon composite structure[J]. Applied Composite Materials, 2017, 23(6):1-14.
[22]  ABDALLAH E A, BOUVET C, RIVALLANT S, et al. Experimental analysis of damage creation and permanent indentation on highly oriented plates[J]. Composites Science & Technology, 2009, 69(7):1238-1245.
[23]  邵青, 何宇廷, 张腾, 等. 复合材料加筋板低速冲击损伤及剩余压缩强度试验研究[J]. 复合材料学报, 2014, 31(1):200-206. SHAO Qing, HE Yuting, ZHANG Teng, et al. Experimental research on low-velocity impact and residual compressive strength of composite stiffened panels[J]. Acta Materiae Compositae Sinica, 2014, 31(1):200-206(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133