全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

羟基磷灰石的表面改性对羟基磷灰石/聚醚醚酮复合材料力学和摩擦性能的影响
Effect of surface modification of hydroxyapatite on mechanical and tribological properties of hydroxyapatite/polyetheretherketone composites

DOI: 10.13801/j.cnki.fhclxb.20180524.001

Keywords: 共沉淀法,羟基磷灰石,聚醚醚酮,力学性能,摩擦性能
coprecipitation method
,hydroxyapatite,polyetheretherketone,mechanical properties,tribological properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用共沉淀法制备纳米羟基磷灰石(HA),并用硅烷偶联剂KH560对其进行表面改性;然后,以聚醚醚酮(PEEK)为基体,通过热压成型工艺制备原始HA/PEEK与改性HA/PEEK复合材料。考察两种HA的引入对复合材料结构、力学性能和摩擦性能的影响。利用XRD、FTIR、FESEM、拉伸测试、DMA和摩擦测试对两种HA/PEEK复合材料的结构和性能进行了表征。结果表明:HA表面引入了硅烷偶联剂KH560;改性前后HA的晶型结构没有明显改变;两种HA对PEEK基体的结晶结构也没有产生影响;改性HA在PEEK基体中分散均匀;与纯PEEK相比,10wt%改性HA/PEEK复合材料的储能模量增加了55.56%,玻璃化温度增加了3.6℃,磨痕深度降低了31.1%,有效改善了复合材料的热力学性能和摩擦性能;改性HA/PEEK拉伸强度为68.33 MPa,能够满足人骨的强度要求。 The nano-hydroxyapatite (HA) was prepared by coprecipitation method, and the surface was modified by grafting silane coupling agent KH560. Then, the HA/polyether ether ketone (PEEK) composites with 10wt% as-synthesized or surface-modified HA were prepared by hot-press moulding procedure. The effects of different HA on the structure, dynamic mechanical and tribological properties of the composites were investigated. The HA/PEEK composites were characterized by XRD, FTIR, FESEM, tensile test, DMA and friction test. The results show that silane coupling agent KH560 is grafted onto the surface of HA, and the crystal structure of as-synthesized and surface-unmodified HA shows no distinct change. In addition, the addition of different HA into PEEK matrix has almost no influence on the crystal structure of PEEK. Besides, the modified HA is homogeneously dispersed in PEEK matrix. Compared with pure PEEK, the PEEK with the addition of 10wt% surface-modified HA is improved in the storage modulus and glass transition temperature by about 55.56% and 3.6℃, respectively, and reduced in the scratching depth by about 31.1%. Therefore, the thermodynamic and tribological properties of the composites are greatly improved. The tensile strength of surface-modified HA/PEEK composites is 68.33 MPa, which can match well with the strength requirement of human bones. 山西省自然科学基金(201601D202018;201601D202019);山西省国际科技合作(2015081045)

References

[1]  WANG C, WANG Y, MENG H, et al. Research progress regarding nanohydroxyapatite and its composite biomaterials in bone defect repair[J]. International Journal of Polymeric Materials & Polymeric Biomaterials, 2016, 65(12):601-610.
[2]  冯娇, 刘海蓉, 李永生, 等. 纳米羟基磷灰石/聚酰胺6医用复合材料的制备及性能表征[J]. 复合材料学报, 2015, 32(6):1602-1610.FENG Jiao, LIU Hairong, LI Yongsheng, et al. Preparation and properties characterization of nano hydroxyapatite/polyamide 6 biomedical composite[J]. Acta Materiae Compositae Sinica, 2015, 32(6):1602-1610(in Chinese).
[3]  蔡卫全, 马睿, 翁履谦, 等. 原位聚合羟基磷灰石/聚醚醚酮复合材料[J]. 化工新型材料, 2010, 38(6):37-39.CAI Weiquan, MA Rui, WENG Lvqian, et al. In situ polymerization of hydroxyapatite/poly(ether-ether-ketone)composites[J]. New Chemical Materials, 2010, 38(6):37-39(in Chinese).
[4]  廖建国, 李艳群, 段星泽, 等. 纳米羟基磷灰石/聚合物复合骨修复材料[J]. 化学进展, 2015, 27(2):220-228.LIAO Jianguo, LI Yanqun, DUAN Xingze, et al. Nano-hydroxyapatite/polymer composite as bone repair materials[J]. Progress in Chemistry, 2015, 27(2):220-228(in Chinese).
[5]  WANG L, HUANG F J, WU Z Z, et al. Cytocompatibility of nano-hydroxyapatite/polyetheretherketone composite materials with Sprague Dawley rat osteoblasts[J]. Materials & Processing Report, 2016, 31(s1):28-32.
[6]  BHUIYAN D, JABLONSKY M J, MIDDLETON J, et al. The synthesis and characterization of nano-hydroxyapatite (nHAP)-g-poly(lactide-co-glycolide)-g-collagen polymer for tissue engineering scaffolds[J]. Mrs Online Proceedings Library Archive, 2013, 1569:27-32.
[7]  DIAO H, SI Y, ZHU A, et al. Surface modified nano-hydroxyapatite/poly(lactideacid) composite and its osteocyte compatibility[J]. Materials Science & Engineering C, 2012, 32(7):1796-1801.
[8]  MA R, FANG L, LUO Z K, et al. Fabrication and characterization of modified-hydroxyapatite/polyetheretherketone coating materials[J]. Applied Surface Science, 2014, 314(10):341-347.
[9]  梁多平, 智慧, 孙智慧, 等. 改性纳米HA对PLA-PBAT共混体系结晶与流变性能的影响[J]. 复合材料学报, 2014, 31(3):569-577.LIANG Duoping, ZHI Hui, SUN Zhihui, et al. Effects of modified nano HA on crystallization and rheological properties of PLA-PBAT blends[J]. Acta Materiae Compositae Sinica, 2014, 31(3):569-577(in Chinese). ASTM. Stand test method for tensile properties of plastics:ASTM D638-14. Philadelphia:ASTM, 2014.
[10]  廖建国, 王学江, 左奕, 等. 硅烷偶联剂对纳米羟基磷灰石表面改性的研究[J]. 无机材料学报, 2008, 23(1):145-149.LIAO Jianguo, WANG Xuejiang, ZUO Yi, et al. Surface modification of nano-hydroxyapatite with silane agent[J]. Journal of Inorganie Materials, 2008, 23(1):145-149(in Chinese).
[11]  曹宗双. 多壁碳纳米管/聚醚醚酮复合材料的制备及其摩擦学性能[D]. 太原:太原理工大学, 2015.CAO Zongshuang. Preparation and tribological properties of multi-walled carbon nanotube and poly (ether ether ketone) composites[D]. Taiyuan:Taiyuan University of Technology, 2015(in Chinese).
[12]  KHEDKAR J, NEGULESCU I, MELETIS E I. Sliding wear behavior of PTFE composites[J]. Wear, 2002, 252(5):361-369.
[13]  PHAN K, HOGAN J A, ASSEM Y, et al. PEEK-Halo effect in interbody fusion[J]. Journal of Clinical Neuroscience:Official Journal of the Neurosurgical Society of Australasia, 2016, 24:138-140.
[14]  FEERICK E M, KENNEDY J, MULLETT H, et al. Investigation of metallic and carbon fibre PEEK fracture fixation devices for three-part proximal humeral fractures[J]. Medical Engineering & Physics, 2013, 35(6):712-722.
[15]  ABUBAKAR M S, CHENG M H, TANG S M, et al. Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants[J]. Biomaterials, 2003, 24(13):2245-2250.
[16]  REGO B T, NETO W A R, DEPAULA A C C, et al. Mechanical properties and stem cell adhesion of injection-molded poly(ether ether ketone) and hydroxyapatite nanocomposites[J]. Journal of Applied Polymer Science, 2015, 132(14):1-13.
[17]  BAKAR M S A, CHEANG P, KHOR K A. Tensile properties and microstructural analysis of spheroidized hydroxyapatite-poly(ether-ether-ketone) biocomposites[J]. Materials Science & Engineering A, 2003, 345(1):55-63.
[18]  周少锋. 碳纤维/尼龙6复合材料的改性与摩擦磨损特性研究[D]. 武汉:武汉理工大学, 2012.ZHOU Shaofeng. Modification of carbon fibres/nylon 6 composites and their friction and wear performance[D]. Wuhan:Wuhan University of Technology, 2012(in Chinese).
[19]  LEE J H, JANG H L, LEE K M, et al. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology[J]. Acta Biomaterialia, 2013, 9(4):6177-6187.
[20]  倪卓, 王应, 华文语, 等. PEEK/HA生物复合材料的热稳定性[J]. 深圳大学学报(理工版), 2012, 29(6):521-526.NI Zhuo, WANG Ying, HUA Wenyu, et al. Thermal stability of PEEK/HA biological composite materials[J], Journal of Shenzhen University(Science and Technology), 2012, 29(6):521-526(in Chinese)
[21]  WEI G, MA P X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering[J]. Biomaterials, 2004, 25(19):4749-4757.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133