全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

飞机用复合材料斜胶接修补结构的冲击损伤
Impact damage of composite scarf bonded repair structure for aircraft

DOI: 10.13801/j.cnki.fhclxb.20171220.001

Keywords: 复合材料,胶接,修补,冲击,损伤容限
composite material
,bonding,repair,impact,damage tolerance

Full-Text   Cite this paper   Add to My Lib

Abstract:

高传力效率的斜面式胶接在飞机复合材料传力接头和修补中被广泛使用,但该结构的低速冲击损伤阻抗和损伤容限未在飞机结构设计中考虑。本文研究了低速冲击下的较厚的复合材料斜胶接板的力学性能及损伤失效。在胶接区域布置不同冲击点,寻找最敏感位置,在该位置进行冲击能量变化研究,通过冲击响应(冲击载荷、挠度、能量等)及冲击损伤两个方面获取其规律和失效机制。小能量和大能量冲击结果表明,胶接区域5个典型冲击位置中,中心位置冲击损伤最大,冲击敏感性最高,因此中心点为冲击损伤阻抗最小位置。中心点不同能量冲击时,冲击响应研究揭示了冲击过程中冲击载荷具有典型的4阶段行为。冲击载荷还具有双峰值力的现象。冲击后沿试样中心线切开的显微损伤图揭示了该结构有两种损伤模式,包括复合材料损伤及胶层损伤。复合材料的损伤包含90°和45°层基体的开裂和0°与90°层之间的层间损伤。胶层损伤出现在试样冲击点正下方背部的复合材料斜接尖端部位。进一步通过考虑复合材料层内、层间损伤及胶层损伤的渐进损伤模型对试验进行仿真研究,找出导致第Ⅱ阶段冲击载荷突降的主要原因为复合材料层间损伤,第Ⅳ阶段冲击载荷再一次突降是由于胶层出现了损伤。 The high efficiency load transferred scarf joints have been applied widely in composite junctions and repairs. However, the damage resistance and damage tolerance were not considered in aircraft structure design. The mechanical and fracture properties of composite scarf repair under low velocity impact were investigated. In the bonded zone, different impact locations were set to found the most sensitive location. Then at this position the variation of impact energy was studied. Low impact energy level and high energy level studies imply that the central position has the lowest impact resistance. Impact responses of impact load reveal that four typical phases exist during impact procedure. The impact load has double peak forces phenomenon. The first peak keeps constant while the second one rises with the increase of impact energy. From the failure investigating on the central section, it is found that there are two damage modes of the composites laminates and the adhesive. Composite damage contains the matrix crack on 90?nd 45° plies and the delamination between 0° and 90° plies. Adhesive damage appears at the backside of specimen opposite to the impact location. Further study of simulation reveals the whole impact behavior of the composite scarf repair. The composite damage leads to impact load dropping at PhaseⅡ, and adhesive damage causes the impact load dropping again at the beginning of phase Ⅳ. 中央高校基本科研业务费专项资金(3102017zy046);国家自然科学基金青年基金(11602286)

References

[1]  谢鸣九. 复合材料连接[M]. 上海:上海交通大学出版社, 2011:1-20. XIE M J. Joints for composites materials[M]. Shanghai:Profile of Shanghai Jiao Tong University Press, 2011:1-20(in Chinese).
[2]  陈绍杰. 复合材料技术发展及其对我国航空工业的挑战[J]. 高科技纤维与应用, 2010, 35(1):2-7. CHEN S J. Development of composite technolo gies and its challenges to China aviation industry[J]. Hi-Tech Fiber & Application, 2010, 35(1):2-7(in Chinese).
[3]  耿甦, 崔旭. 复合材料修理技术研究[J]. 沈阳航空工业学院学报, 2005, 22(4):43-46. GENG S, CUI X. Research on complex material repair technology[J]. Journal of Shenyang Institute of Aeronautcal Engineering, 2005, 22(4):43-46(in Chinese).
[4]  耿甦. 复合材料修理技术研究进展综述[C]//中国航空学会标准化技术委员会学术交流会, 2005. GENG S. Review of research on composite material re pair technology[C]//Academic Exchange Conference on the Standardization Technology Committee of the China Aeronautical, 2005(in Chinese).
[5]  徐绯, 刘斌, 李文英, 等. 复合材料修理技术研究进展[J]. 玻璃钢/复合材料, 2014(8):105-112. XU F, LIU B, LI W Y, et al. Research progress of composite repair technique[J]. Fiber Reinforced Plastics/Composites, 2014(8):105-112(in Chinese).
[6]  韩庆, 宋恩鹏, 陆华, 等. 复合材料加筋结构后屈曲的自开发程序[J]. 复合材料学报, 2017, 34(7):1443-1450. HAN Q, SONG E P, LU H, et al. The self-developed program for post-buckling of composite stiffened structures[J]. Acta Materiae Compositae Sinica, 2017, 34(7):1443-1450(in Chinese).
[7]  FAN X L, SUN Q, WANG T J. Damage evolution of sandwich composite structure using a progressive failure analysis methodology[J]. Procedia Engineering, 2011(10):530-535.
[8]  刘向民, 姚卫星, 陈方. 复合材料层合板结构冲击损伤数值模拟的损伤力学模型[J]. 航空学报, 2016, 37(10):3054-3063.LIU X M, YAO W X, CHEN F. Damage mechanics model for simulating impact responses of composite laminated structures[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3054-3063(in Chinese).
[9]  蒋宏勇, 任毅如, 袁秀良, 等. 基于非线性渐进损伤模型的复合材料波纹梁耐撞性能研究[J]. 航空学报, 2017, 38(6):165-177. JIANG H Y, REN Y R, YUAN X L, et al. Crash worthiness of composite corrugated beam based on nonlinear progressive damage model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):165-177(in Chinese).
[10]  刘斌, 徐绯, 菊池正纪, 等. 斜胶接CFRP的冲击损伤容限研究[J]. 固体火箭技术, 2015, 38(6):870-876. LIU B, XU F, KIKUCHI M, et al. Study on impact damage tolerance of scarf bonded CFRP[J]. Journal of Solid Rocket Technology, 2015, 38(6):870-876(in Chinese).
[11]  卢智先, 拓宏亮, 刘斌. 复合材料单钉搭接单剪与双剪的挤压破坏试验研究[J]. 玻璃钢/复合材料, 2017(4):85-89. LU Z X, TUO H L, LIU B. The experimental research of compressional damage for single bolted joints of composites under single shearing and double shearing[J]. Fiber Reinforced Plastics/Composites, 2017(4):85-89(in Chinese).
[12]  FAN X L, ZHANG W X, WANG T J, et al. Investigation on periodic cracking of elastic film/substrate system by the extended finite element method[J]. Applied Surface Science, 2011, 257(15):6718-6724.
[13]  KATNAM K B, DASIVA L F M, YOUNG T M. Bonded repair of composite aircraft structures:A review of scientific challenges and opportunities[J]. Progress in Aerospace Sciences, 2013, 61:26-42.
[14]  LIU B, XU F, YAN R, et al. Parameters sensitivity and optimization for composite scarf repair[J]. Journal of Reinforced Plastics and Composites, 2014, 33(23):2164-2173.
[15]  HARMAN A B, RIDER A N. Impact damage tolerance of composite repairs to highly-loaded, high temperature composite structures[J]. Composites Part A:Applied Science & Manufacturing, 2011, 42(10):1321-1334.
[16]  LIU B, XU F, FENG W, et al. Experiment and design methods of composite scarf repair for primary-load bearing structures[J]. Composites Part A:Applied Science and Manufacturing, 2016, 88:27-38.
[17]  刘斌, 徐绯, 季哲, 等. 改进的复合材料斜接结构胶层应力半解析法[J]. 复合材料学报, 2015, 32(2):232-239. LIU B, XU F, JI Z, et al. Modified semi-analytical method for adhesive stress of scarf joint structures[J]. Acta Materiae Compositae Sinica, 2015, 32(2):232-239(in Chinese).
[18]  关志东, 刘遂, 郭霞, 等. 含半穿透损伤层合板挖补修理后的拉伸性能[J]. 复合材料学报, 2013, 30(23):144-151. GUAN Z D, LIU S, GUO X, et al. Tensile behavior of scarfing repaired laminates with half-depth damage[J]. Acta Materiae Compositae Sinica, 2013, 30(23):144-151(in Chinese).
[19]  郭霞, 关志东, 刘遂, 等. 蜂窝夹层修理结构的弯曲性能试验分析[J]. 复合材料学报, 2013, 30(5):187-194. GUO X, GUAN Z D, LIU S, et al. Test analysis on flexural per formances of repaired honeycomb sandwich structures[J]. Acta Materiae Compositae Sinica, 2013, 30(5):187-194(in Chinese).
[20]  LIANG K, SUN Q. Buckling and post-buckling analysis of the delaminated composite plates using the Koiter-Newton method[J]. Composite Structures, 2017, 168:266-276.
[21]  朱琳, 余音, 汪海. 复合材料曲板缺陷及安装误差对屈曲性能的影响[J]. 航空学报, 2016, 37(7):2180-2188. ZHU L, YU Y, WANG H. Effects of defects in cylindrical panels and fix errors on buckling behavior[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2180-2188(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133