|
- 2016
等腰梯形蜂窝芯玻璃钢夹芯板的面内压缩性能
|
Abstract:
为研究等腰梯形蜂窝芯玻璃钢夹芯板面内压缩破坏机制, 利用材料试验机对夹芯板面内压缩性能进行了试验测试, 并开展了模拟研究。结果表明: 夹芯板的面内压缩破坏方式主要有面板折断、夹芯板屈曲失稳和夹芯板中面板与蜂窝芯脱粘3种类型。面板为夹芯板面内压缩的主要承载构件, 蜂窝芯对面板起到固支作用。面板结构参数与材料参数为影响夹芯板面内压缩抗压强度与抗压刚度主要因素, 多数蜂窝芯的结构参数与材料参数对夹芯板面内压缩抗压强度的影响微弱, 而个别蜂窝芯的结构参数对夹芯板面内压缩抗压刚度的影响比较显著。夹芯板体积一定时, 随着蜂窝芯胞体单元数量的增加, 夹芯板面内压缩的抗压强度与抗压刚度逐渐增大。 In order to investigate the in-plane compressive failure mechanisms for isosceles-trapezoid honeycomb core of glass steel sandwich panels, the testing measurement on in-plane compressive properties of sandwich panel were conducted by material testing machine, and simulated investigation were carried out. The results show that the in-plane compressive damage ways of sandwich panels have three types of panel breaking, buckling instability of sandwich panel and deboning between panel and honeycomb core in sandwich panel. Panel is the main load bearing component of sandwich panel in-plane compression, and the honeycomb core function by clamped effect to the panel. The structural parameters and material parameters of panel are the main factors which influence the compressive strength and compressive rigidity for in-plane compression of sandwich panels. The structural parameters and material parameters of majority honeycomb core have little influence on compressive strength for in-plane compression of sandwich panels, but the structural parameters of individual honeycomb core have relatively remarkable influences on compressive rigidity for in-plane compression of sandwich panels. When the volume of sandwich panel is constant, the compressive strength and compressive rigidity for in-plane compression of sandwich panels increase gradually with honeycomb core unit cell body number increasing.
[1] | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese). |
[2] | ZABIHPOOR M, ADIBNAZARI S. Mechanisms of fatigue damage in foam core sandwich composites with unsymmetrical carbon/glass face sheets[J]. Journal of Reinforced Plastics and Composites, 2007, 26(17): 1831-1842. |
[3] | VAIDYA U K, PILLAY S, BARTUS S, et al. Impact and post impact vibration response of protection metal foam composite sandwich plates[J]. Materials Science and Engineering: A, 2006, 428(1): 59-66. |
[4] | NEMAT-NASSER S, KANG W J, MCGEE J D, et al. Experimental investigation of energy absorption characteristics of component of sandwich structures[J]. International Journal of Impact Engineering, 2007, 34(6): 1119-1146. |
[5] | 孙直, 石珊珊, 孙士勇, 等. 芳纶纤维增韧碳纤维泡沫金属夹芯梁压缩性能及界面性能[J]. 复合材料学报, 2014, 31(6): 1497-1502. SUN Z, SHI S S, SUN S Y, et al. Compression performance and interfacial properties of carbon fiber-foam metal sandwich beams with aramid fiber toughening[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1497-1502 (in Chinese). |
[6] | WANG C, CHEN H R, LEI Z K. Experimental investigation of interfacial fracture behavior in foam core sandwich beams with visco-elastic adhesive interface[J]. Composite Structures, 2010, 92(5): 1085-1091. |
[7] | SUN Z, JEYARAMAN J, SUN S Y, et al. Carbon-fiber aluminum foam sandwich with short aramid-fiber interfacial toughening[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(11): 2059-2064. |
[8] | SUN S Y, CHEN H R. The interfacial fracture behavior of foam core composite sandwich structures by a viscoelastic cohesive model[J]. Science China Physics, Mechanics & Astronomy, 2011, 54(8): 1481-1487. |
[9] | 闫光, 韩小进, 阎楚良, 等. 复合材料圆柱壳轴压屈曲性能分析[J]. 复合材料学报, 2014, 31(3): 781-787. YAN G, HAN X J, YAN C L, et al. Bucking analysis of composite cylindrical shell under axial compression load[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 781-787 (in Chinese). |
[10] | 杨颜志, 郑权, 李昊, 等. 复合材料格栅圆柱筒稳定性数值仿真与试验[J]. 复合材料学报, 2015, 32(1): 295-300. YANG Y Z, ZHENG Q, LI H, et al. Numerical simulation and test on stability of composite grid stiffened cylinder[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 295-300 (in Chinese). |
[11] | 井玉安, 果世驹, 李志军, 等. 钢蜂窝夹芯板面内压缩性能[J]. 机械工程材料, 2007, 31(8): 19-23. JIN Y A, GUO S J, LI Z J, et al. In-plane compressive properties of mild steel honeycomb sandwich[J]. Materials for Mechanical Engineering, 2007, 31(8): 19-23 (in Chinese). |
[12] | KARAGIOZOVA D, YU T X. Plastic deformation models of regular hexagonal honeycomb under in-plane biaxial compression[J]. International Journal of Mechanical Science, 2004, 46(10): 1489-1515. |
[13] | WANG A J, MCDOWELL D L. In-plane stiffness and yield strength of periodic metal honeycombs[J]. Journal of Engineering Materials and Technology, 2004, 126(2): 137-156. |
[14] | 田爱平, 余为, 李东杰. 泡沫铝-空心玻璃微珠/环氧泡沫复合材料压缩及弯曲力学性能[J]. 复合材料学报, 2013, 30(4): 74-81. TIAN A P, YU W, LI D J. Compressive and flexural mechanical properties of foam Al-HGM/epoxy foam composites[J]. Acta Materiae Compositae Sinica, 2013, 30(4): 74-81 (in Chinese). |
[15] | ZHANG W H, SUN S P. Scale-related topology optimization of cellular materials and structures[J]. International Journal for Numerical Methods in Engineering, 2006, 68(9): 993-1011. |
[16] | ONCK P R, ANDREWS E W, GIBSON L J. Size effects in ductile cellular solids. Part I: Model[J]. International Journal of Mechanical Sciences, 2001, 43(3): 681-699. |
[17] | TANTIKOM K, AIZAWA T, MUKAI T. Symmetric and asymmetric deformation transition in the regularly cell-structure materials. Part I: Experiment study[J]. International Journal of Solids and Structures, 2005, 42(8): 2199-2210. |
[18] | 中华人民共和国国家质量监督检验检疫总局. 夹层结构侧压性能试验方法: GB/T 1454-2013[S]. 北京: 中国标准出版社, 2013. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Test method for edgewise compressive properties of sandwich constructions: GB/T 1454-2013[S]. Beijing: Standards Press of China, 2013 (in Chinese). |
[19] | 郑吉良, 孙勇, 彭明军. 基于纤维拔出理论的复合材料力学性能的研究[J]. 兵器材料科学与工程, 2014, 37(2): 16-21. ZHENG J L, SUN Y, PENG M J. Mechanical properties of composite material based on fiber pull-out theory[J]. Ordance Material Science and Engineering, 2014, 37(2): 16-21 (in Chinese). |
[20] | 郑吉良, 孙勇. 单层与多层蜂窝芯玻璃钢蜂窝板的热性能模拟[J]. 复合材料学报, 2014, 31(2): 518-524. ZHENG J L, SUN Y. Simulation of thermal performance for single layer and multilayer of the FRP honeycomb panel[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 518-524 (in Chinese). |