全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

纤维对超高性能混凝土残余强度及高温爆裂性能的影响
Effect of fiber on residual strength and explosive spalling behavior of ultra-high-performance concrete exposed to high temperature

DOI: 10.13801/j.cnki.fhclxb.20160321.002

Keywords: 超高性能混凝土,纤维,残余抗压强度,残余劈裂抗拉强度,高温爆裂
ultra-high-performance concrete
,fiber,residual compressive strength,residual tensile splitting strength,explosive spalling

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用普通原材料制备56 d龄期抗压强度为140~160 MPa的空白组超高性能混凝土、钢纤维超高性能混凝土及混杂纤维超高性能混凝土,测定其遭受高温作用后的残余抗压强度和劈裂抗拉强度,并对100%含湿量的混凝土试块进行高温爆裂试验。此外,测定大小2种加热速率对超高性能混凝土高温爆裂行为的影响。结果表明:所配制混凝土的残余抗压强度均随着目标温度的升高呈现先增大再降低的趋势,800℃高温后的残余抗压强度约为常温强度的30%。钢纤维与混杂纤维混凝土的残余劈裂抗拉强度亦呈现先升高再降低的趋势,800℃高温后的残余劈裂抗拉强度分别为常温强度的15.1%和35.4%。空白组混凝土的残余劈裂抗拉强度随着目标温度的升高而单调下降,800℃高温后的强度值约为常温强度的20.3%。7.5℃/min加热速率下,100%含湿量的3种混凝土试块均发生了严重高温爆裂,单掺钢纤维可以改善超高性能混凝土的高温爆裂,但不能避免爆裂的发生,而混杂纤维对超高性能混凝土高温爆裂的改善效果并未显著优于钢纤维。2.5℃/min加热速率下,混杂纤维可避免部分超高性能混凝土试块发生爆裂。 Plain concrete, steel fiber and hybrid fiber reinforced ultra-high-performance concretes, with 140-160 MPa compressive strength at 56 d, were prepared using common raw materials. The residual compressive strength and tensile splitting strength of these concretes after exposure to high temperature were determined experimentally. Explosive spalling test was carried out on the specimens with 100% moisture content and two heating rates were employed to study the effect of heating rate on spalling behavior of ultra-high-performance concrete. The results indicate that residual compressive strength of each type of concrete increases firstly, and then decreases with increasing temperature. After exposure to 800℃, residual compressive strength is approximately 30% of that at normal temperature. Residual tensile splitting strength of both steel fiber reinforced concrete and hybrid fiber reinforced concrete also increase firstly and then decrease, which are 15.1% and 35.4% of the original strength, respectively. Residual tensile splitting strength of plain concrete decreases with increasing temperature, which is 20.3% of its original strength after exposure to 800℃. At 7.5℃/min heating rate, explosive spalling of each type of concrete specimens with 100% moisture content is quite severe. Nevertheless, steel fiber can alleviate explosive spalling but does not avoid the occurrence of explosive spalling, and the effect of hybrid fiber on improving spalling resistance behavior of ultra-high-performance concrete is not significantly superior to that of steel fiber. At 2.5℃/min heating rate, incorporating hybrid fiber inhibits the occurrence of explosive spalling in some specimens. 国家自然科学基金(51278048,50978026);北京交通大学基本科研业务费(C11JB00720)

References

[1]  KOIZUMI S, IMOTO H, SUGAMATA T, et al. A study on potential strength development and hydration reaction of ultra-high-strength concrete[J]. Proceedings of the Japan Concrete Institute, 2008, 30: 115-120.
[2]  朋改非, 陈延年, ANSON M. 高性能硅灰混凝土的高温爆裂与抗火性[J]. 建筑材料学报, 1999, 2(3): 193-198. PENG G F, CHEN Y N, ANSON M. Explosive spalling thermally and fire property of high performance silica fume concrete[J]. Journal of Building Materials, 1999, 2(3): 193-198(in Chinese).
[3]  LEE J H, LEE S H, SOHN Y S. Fire resistance of hybrid fibre-reinforced ultra-high strength concrete columns with compressive strength from 120 to 200 MPa[J]. Magazine of Concrete Research, 2012, 64(6): 539-550.
[4]  林力勋, 叶浩文, 冯乃谦, 等. 掺聚丙烯纤维改善C120超高强混凝土脆性的试验研究[J]. 工业建筑, 2012, 42(11): 1-5. LIN L X, YE H W, FENG N Q, et al. Experimental study of C120 ultra-high performance incorporating PP fibers for improving its brittleness[J]. Industries Building, 2012, 42(11): 1-5(in Chinese).
[5]  CHAN Y N, PENG G F, ANSON M. Fire behavior of high-performance concrete made with silica fume at various moisture contents[J]. ACI Materials Journal, 1999, 96(3): 405-409.
[6]  OZAWA M, MORIMOTO H. Effects of various fibres on high-temperature spalling in high performance concrete[J]. Construction and Building Materials, 2014, 71(2): 83-92.
[7]  边松华, 朋改非, 赵章力, 等. 不同含湿量、纤维品种及掺量对高性能混凝土高温爆裂和残余抗压强度的影响[J]. 建筑材料学报, 2005, 8(3): 321-327. BIAN S H, PENG G F, ZHAO Z L, et al. Effects of moisture contents and fibers on properties of high performance concrete at high temperature[J]. Journal of Building Materials, 2005, 8(3): 321-327(in Chinese).
[8]  PENG G F. Effect of steel fiber on explosive spalling and permeability of high performance concrete after exposure to high temperature[C]//Proceedings of the 6th International Conference on Concrete under Severe Conditions (Environment and Loading). Merida Yucatan: CRC Press/Balkema, 2010: 1029-1035.
[9]  CHEN B. Residual strength of hybrid fiber reinforced high-strength concrete after exposure to high temperature[J]. Cement and Concrete Research, 2004, 34(6): 1065-1069.
[10]  AYDIN S, YAZICI H, BARADAN B, et al. High temperature resistance of normal strength and autoclaved high strength mortars incorporated polypropylene and steel fibers[J]. Construction and Building Materials, 2008, 22(4): 504-512.
[11]  POON C S, SHUI Z H, LAM L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures[J]. Cement and Concrete Research, 2004, 34(12): 2215-2222.
[12]  SCHNEIDER U, DIEDERICHS U, HORVATH J. Verhalten von ultrahochfesten betonen (UHPC) unter brandbeanspruchung[J]. Beton-und Stahlbetonbau, 2003, 98(7): 408-417.
[13]  WANG C, YANG C H, LIU F, et al. Preparation of ultra-high performance concrete with common technology and materials[J]. Cement & Concrete Composites, 2011, 34(4): 538-544.
[14]  POON C S, AZHAR S, MIKE A, et al. Comparison of the strength and durability performance of normal-and high-strength pozzolanic concretes at elevated temperatures[J]. Cement and Concrete Research, 2001, 31(9): 1291-1300.
[15]  KALIFA P, MENNETEAU F D, QUENARD D. Spalling and pore pressure in HPC at high temperatures[J]. Cement and Concrete Research, 2000, 30(12): 1915-1927.
[16]  增田隆行, 高橋孝二, 山田人司, 等. 超高強度材料を用いた鉄筋コンクリート柱の耐火性に関する研究(その11 Fc 150 N/mm2級コンクリート柱の載荷加熱実験結果)[C]//日本建築学会大会学術講演梗概集. 九州:[s. n.], 2005: 79-80. MASUDA T, TAKAHASHI K, YAMADA T, et al. Testing research on the fire resistance of ultra-strength concrete column (heat loading experimental result of among11 Fc=150 N/mm2 level concrete column)[C]//The Lecture Outline Set of Japanese Architectural Society. Kyushu:[s. n.], 2005: 79-80(in Japanese).
[17]  RAHMAN S, MOLYNEAUX T, PATNAIKUNI I. Ultra high performance concrete: Recent applications and research[J]. Australian Journal of Civil Engineering, 2005, 2(1): 13-20.
[18]  WATANABE S, TERAUCHI R, OTAGIRI C, et al. Development of the quality control system for stabilization of quality of ultra-high strength concrete by careful selection of coarse aggregate[J]. Concrete Journal, 2007, 45(2): 32-40.
[19]  ZHENG W Z, LI H Y, WANG Y. Compressive behavior of hybrid fiber-reinforced reactive powder concrete after high temperature[J]. Materials and Design, 2012, 41: 403-409.
[20]  KALIFA P, CHENE G, GALLE C. High-temperature behaviour of HPC with polypropylene fibers from spalling to microstructure[J]. Cement and Concrete Research, 2001, 31(10): 1487-1499

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133