|
- 2018
星载蜂窝夹层结构固面天线反射器的热变形
|
Abstract:
针对固面天线反射器在轨运行时自身结构因素受环境温度变化引起热变形的问题,以一口径为1.2 m的星载蜂窝夹层结构固面反射器为研究对象,首先采用有限元仿真软件详细分析了温度由20℃降到-80℃时,不同蒙皮材料、胶层厚度、蜂窝刚度和蜂窝的热膨胀系数(CTE)对反射器热变形型面精度均方根(RMS)的影响规律,其次采用热压罐成型工艺制备了M55J和T300蒙皮材料的两种典型蜂窝夹层结构反射器对仿真结果进行试验验证。结果表明:M55J蒙皮材料发射器的热变形比T300蒙皮材料反射器的小,同时发现发射器的热变形与胶层的厚度基本呈线性关系,胶层厚度越薄,反射器的热变形越小,且当胶层厚度一定时,蜂窝的热变形占主导因素,其刚度变化值提升2倍时影响趋势突变,此时蒙皮刚度对蜂窝热变形的抑制作用明显,当蜂窝的CTE改变11倍时,反射器热变形RMS改变值大于80%。经试验测得环境温度由20℃降到-80℃时两种典型反射器的热变形的RMS值和仿真计算差值分别为15.7%和15.2%,证明仿真结果可靠,可通过优化相应的结构参数为星载天线反射器的设计提供参考。 To explore the main self-structure factors affecting the thermal distortion of rigid antenna reflector in orbit, a spaceborne honeycomb sandwich structure model with a diameter of 1.2 m was analyzed. Firstly, by altering the skin material, the thickness of adhesive, the property include stiffness and coefficient of thermal expansion (CTE) of honeycomb, a finite element simulation software was used to calculate the root mean square (RMS) of the thermal deformation of the reflector when the ambient temperature changes from 20℃ to -80℃. Furthermore, the causes of each factor were analyzed. Secondly, two typical honeycomb sandwich structure reflectors of M55J and T300 skin materials were prepared by autoclave molding process so as to validate simulation results. The results indicate that the thermal deformation of the M55J skin material reflector is smaller than that of the T300. In addition, there is a linear relationship between the thermal distortion and the thickness of the adhesive, the thinner the later, the smaller the former. When the thickness of the adhesive layer is constant, the thermal deformation of the honeycomb is the dominant factor. The effect of the skin stiffness on the thermal deformation of honeycomb is obvious as the increasment of the stiffness value is 2 times. Moreover, when the normal CTE of honeycomb is changed by 11 times, the relative increment of thermal deformation is more than 80%. The thermal distortions of the two typical reflectors were measured as the environment temperature changed from 20℃ to -80℃. The difference of the thermal distortion between simulation and testing is 15.7% and 15.2%, respectively, which proves the simulation results are reliable. By optimizing the corresponding parameters can provide reference for the design of spaceborne antenna reflector. 国家自然科学基金青年科学基金项目(11503093)
[1] | 夏文干, 杨洁. 先进复合材料天线反射器精度的国内外情况[J]. 电子机械工程, 2001, 17(3):53-55. XIA W G, YANG J. The situation at home and abroad of the advanced composite material antenna reflector accuracy[J]. Electro-Mechanical Engineering, 2001, 17(3):53-55(in Chinese). |
[2] | 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338. XING L Y, BAO J W, LI S M, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1327-1338(in Chinese). |
[3] | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12(in Chinese). |
[4] | ERICSSON A, RUMPLER R, SJOBERG D, et al. A combined electromagnetic and acoustic analysis of a triaxial carbon fiber weave for reflector antenna applications[J]. Aerospace Science and Technology, 2016, 58(11):401-417. |
[5] | 杨智勇, 张博明, 解永杰, 等. 碳纤维复合材料空间反射镜制造技术研究进展[J]. 复合材料学报, 2017, 34(1):1-11. YANG Z Y, ZHANG B M, XIE Y J, et al. Research progress on fabrication technology of space mirror using carbon fiber composite[J]. Acta Materiae Compositae Sinica, 2017, 34(1):1-11(in Chinese). |
[6] | CAPECE P. Active SAR antennas:Design, development and current programs[J]. International Journal of Antennas and Propagation, 2009. |
[7] | ARAO Y, KOYANAGI J, UTSUNOMIYA S, et al. Analysis of thermal deformation on a honeycomb sandwich CFRP mirror[J]. Mechanics of Advanced Materials and Structures, 2010, 17(5):328-334. |
[8] | 郝长岭, 周贤宾, 李志光, 等. 紧缩场蜂窝夹层反射面板材料参数优化反求[J]. 复合材料学报, 2008, 25(3):190-196. HAO C L, ZHOU X B, LI Z G, et al. Material parameter identification of sandwich reflector panels of compact antenna test range by genetic algorithm-based inverse method[J]. Acta Materiae Compositae Sinica, 2008, 25(3):190-196(in Chinese). |
[9] | IMBRIALE W A, BOCCIA L. Space antenna handbook[M]. USA:Wiley, 2012:59-73. |
[10] | KUMAR C, SRINIVASAN V V, LAKSHMEESHA V K, et al. Performance of an electrically small aperture, axially displaced ellipse reflector antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8(4):903-904. |
[11] | 陈志华, 关富玲. 星载抛物面天线反射器瞬态热分析[J]. 固体力学学报, 2008, 29(3):272-276. CHEN Z H, GUAN F L. Transient thermal analysis of parabolic antenna reflector on orbit[J]. Chinese journal of solid mechanics, 2008, 29(3):272-276(in Chinese). |
[12] | 闵桂荣. 航天器热控制[M]. 北京:科学出版社, 1998:49-72. MIN G R. Thermal control of spacecraft[M]. Beijing:Science Press, 1998:49-72(in Chinese). |
[13] | 张立华. 空间飞行器抛物面天线在轨热变形分析[J]. 航天器工程, 1998, 7(1):50-57. ZHANG L H. Thermal deformation analysis of parabolic antenna of spacecraft on orbit[J]. Spacecraft Engineering, 1988, 7(1):50-57(in Chinese). |
[14] | YOU B, ZHANG H, WANG P, et al. Satellite antenna dynamics and control with thermal effect[J]. Aircraft Engineering and Aerospace Technology:An International Journal, 2015, 87(3):274-283. |
[15] | 王帅. 星载天线热-结构仿真分析方法研究[D]. 西安:西安电子科技大学, 2014. WANG S. Research on the method of thermal-structure analysis of satellite antennas[D]. Xi'an:Xidian University, 2014(in Chinese). |
[16] | PONOMAREV V S, GERASIMOV A V, PONOMAREV S V, et al. Spacecraft reflectors thermomechanical analysis[C]//EPJ Web of Conferences. EDP Sciences, 2015, 82:01005. |
[17] | 朱敏波, 钟杨帆, 段宝岩. 星载天线在轨热变形多因素影响仿真分析[J]. 系统仿真学报, 2007, 19(6):1376-1378. ZHU M B, ZHONG Y F, DUAN B Y. Multiply factors simulation analysis for thermal deformation of space-borne antenna[J]. Journal of System Simulation, 2007, 19(6):1376-1378(in Chinese). |
[18] | 万小平, 于新战. 某卫星固面反射器热变形测试分析与模型修正[J]. 航天器环境工程, 2016, 33(6):672-675. WAN X P, YU X Z. Test and analysis of thermal distortion of a deployable CFRP reflector[J]. Spacecraft Environment Engineering, 2016, 33(6):672-675(in Chinese). |
[19] | 姚科, 杨军, 韦娟芳. 星载固面反射天线热变形分析[J]. 低温建筑技术, 2016, 38(2):67-69. YAO K, YANG J, WEI J F. Thermal deformation of rigid reflector for space-borne antenna[J]. Low Temperature Architecture Technology, 2016, 38(2):67-69(in Chinese). |
[20] | 马开锋. 高低温环境卫星天线形面变形的近景摄影测量与数据处理[D]. 北京:中国矿业大学, 2016. MA K F. Close-range photogrammetry and data processing of shape-surface deformation of satellite antenna under high-low temperature environments[D]. Beijing:China University of Mining & Technology, 2016(in Chinese). |
[21] | TANAKA S, IKEDA T, SENBA A. Sensitivity analysis of thermal deformation of CFRP laminate reflector due to fiber orientation error[J]. Journal of Mechanical Science and Technology, 2016, 30(10):4423-4426. |
[22] | 马增祥, 杨德华, 王淑青, 等. 基于刚体位移的天线反射面拟合新算法[J]. 机械工程学报, 2010, 46(18):29-35. MA Z X, YANG D H, WANG S Q, et al. Antenna reflector surface fitting algorithm based on rigid body displacement principle[J]. Chinese Journal of Mechanical Engineering, 2010, 46(18):29-35(in Chinese). |
[23] | 娄铮, 钱元, 范生宏, 等. 基于数字摄影测量技术的高精度低温面形测量[J]. 天文学报, 2016, 57(1):115-124. LOU Z, QIAN Y, FAN S H, et al. High-precision photogrammetric surface figure measurements under cryogenic environment[J]. Acta Astronomica Sinica, 2016, 57(1):115-124(in Chinese). |