全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

结构参数对自相似多级蜂窝力学性能的影响
Influence of structure parameters on mechanical properties of self-similar hierarchical honeycombs

DOI: 10.13801/j.cnki.fhclxb.20161202.005

Keywords: 自相似多级蜂窝,代表性体积单元,边界条件,各向异性,力学性能
self-similar hierarchical honeycombs
,representative volume element,boundary conditions,anisotropy,mechanical behavior

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  LI Y M, HOANG M P, ABBES B, et al. Analytical homogenization for stretch and bending of honeycomb sandwich plates with skin and height effects[J]. Composite Structures, 2015, 120:406-416.
[2]  王弈, 邓宗白. 基于角点检测的铝蜂窝芯层拉伸力学性能研究[J]. 传感器与微系统, 2010, 29(09):27-29. WANG Y, DENG Z B. Research on tensile mechanical properties of aluminum honeycomb core based on corner detection[J]. Transducer and Microsystem Technologies, 2010, 29(09):27-29(in Chinese).
[3]  王博, 石云峰, 陈友伟, 等. 多层级蜂窝材料面内模量对孔壁弯曲的缺陷敏感性[J]. 复合材料学报, 2015, 32(05):1445-1452. WANG B, SHI Y F, CHEN Y W, et al. Imperfection sensitivities of in-plane moduli of hierarchical lattice materials to cell edge waviness[J]. Acta Materiae Compositae Sinica, 2015, 32(05):1445-1452(in Chinese).
[4]  LAKES R. Materials with structural hierarchy[J]. Nature, 1993, 361(6412):511-515.
[5]  SCHAEDLER T A, JACOBSEN A J, TORRENTS A, et al. Ultralight metallic microlattices[J]. Science, 2011, 334(6058):962-965.
[6]  FAN H L, JIN F N, FANG D N. Mechanical properties of hierarchical cellular materials. Part I:Analysis[J]. Composites Science & Technology, 2008, 68(15-16):3380-3387.
[7]  AJDARI A, JAHROMI B H, PAPADOPOULOS J, et al. Hierarchical honeycombs with tailorable properties[J]. International Journal of Solids & Structures, 2012, 49(11-12):1413-1419.
[8]  TAYLOR C M, SMITH C W, MILLER W, et al. The effects of hierarchy on the in-plane elastic properties of honeycombs[J]. International Journal of Solids & Structures, 2011, 48(9):1330-1339.
[9]  TAYLOR C M, SMITH C W, MILLER W, et al. Functional grading in hierarchical honeycombs:Density specific elastic performance[J]. Composite Structures, 2012, 94(8):2296-2305.
[10]  OFTADEH R, HAGHPANAH B, PAPADOPOULOS J, et al. Mechanics of anisotropic hierarchical honeycombs[J]. International Journal of Mechanical Sciences, 2014, 81(4):126-136.
[11]  黄富华, 梁军, 杜善义. 均匀化方法的ABAQUS实现[J]. 哈尔滨工业大学学报, 2010, 42(3):389-392. HUANG F H, LIANG J, DU S Y. Realization of homogenization method with ABAQUS[J]. Journal of Harbin Institute of Technology, 2010, 42(3):389-392(in Chinese).
[12]  JIANG W G, ZHONG R Z, QIN Q H, et al. Homogenized finite element analysis on effective elastoplastic mechanical behaviors of composite with imperfect interfaces[J]. International Journal of Molecular Sciences, 2014, 15(12):23389-23407.
[13]  GAMBAROTTA L, LAGOMARSINO S. Damage models for the seismic response of brick masonry shear walls. part Ⅰ:The mortar joint model and its applications[J]. Earthquake Engineering & Structural Dynamics, 1997, 26(4):423-439.
[14]  韩同伟, 贺鹏飞, 王健, 等. 石墨烯拉伸力学性能温度相关性的数值模拟[J]. 同济大学学报:自然科学版, 2009, 37(12):1638-1641. HAN T W, HE P F, WANG J, et al. Numerical simulation of temperature dependence of tensile mechanical properties for single graphene sheet[J]. Journal of Tongji University (Natural Science), 2009, 37(12):1638-1641(in Chinese).
[15]  吴志凯, 江五贵, 郑隆. 界面对双向纤维增强复合材料力学性能的影响[J]. 复合材料学报, 2017, 34(1):217-223. WU Z K, JIANG W G, ZHENG L.The interfacial effect on mechanical behaviors of bidirectional fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 2017, 34(1):217-223(in Chinese).
[16]  郑隆, 江五贵, 吴志凯. 多级蜂窝弹性参数的有限元模拟[J]. 南昌航空大学学报(自然科学版), 2016, 30(2):22-27. ZHENG L, JIANG W G, WU Z K. Finite element simulation on mechanical properties ofhierarchical honeycombs[J]. Journal of Nanchang Hangkong University:Natural Sciences, 2016, 30(2):22-27(in Chinese).
[17]  郑吉良, 孙勇, 彭明军. 等腰梯形蜂窝芯玻璃钢夹芯板的面内压缩性能[J]. 复合材料学报, 2016, 33(02):408-417. ZHENG J L, SUN Y, PENG M J. In-plane compressive properties for isosceles-trapezoid honeycomb core of glass steel sandwich panel[J]. Acta Materiae Compositae Sinica, 2016, 33(02):408-417(in Chinese).
[18]  HAGHPANAH B, OFTADEH R, PAPADOPOULOS J, et al. Self-similar hierarchical honeycombs[J]. Proceedings of the Royal Society A:Mathematical, Physical & Engineering Sciences, 2013, 469(2156):1-19.
[19]  HAGHPANAH B, PAPADOPOULOS J, MOUSANEZHAD D, et al. Buckling of regular, chiral and hierarchical honeycombs under a general macroscopic stress state[J]. Proceedings of the Royal Society A:Mathematical, Physical & Engineering Sciences, 2014, 470(2167):20130856.
[20]  FOO C C, CHAI G B, SEAH L K. Mechanical properties of Nomex material and Nomex honeycomb structure[J]. Composite Structures, 2007, 80(4):588-594.
[21]  ABOUDI J. Mechanics of composite materials:A unified micromechanical approach[M]. New York:Elsevier Science Pub Co, 1991.
[22]  SUQUET P. Elements of homogenization for inelastic solid mechanics[J]. Homogenization Techniques for Composite Media, 1987, 272:194-278.
[23]  XIA Z, ZHANG Y, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids & Structures, 2003, 40(8):1907-1921.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133