|
- 2017
碱式硫酸镁形貌对碱式硫酸镁/聚丙烯复合材料力学性能的影响
|
Abstract:
以三种不同形貌的碱式硫酸镁(颗粒状(MOSP)、晶须状(MOSW)和扇形(MOSS))为填料、月桂酸(LA)为改性剂、聚丙烯(PP)为树脂基体,通过熔融共混法制备了系列MOS/PP复合材料。SEM结果显示,改性后的MOSP和MOSW在基体中分散均匀,但与基体PP的相容性依然较差;MOSS/PP样品中同时存在着尺寸较大且形貌复杂的MOSS和部分分散的MOSW,界面缺陷更加明显。广角X-射线衍射(WXRD)结果表明,三种MOS均能诱导β-晶型PP的产生,与月桂酸的加入无关,其中MOSP诱导效果更明显。力学性能测试结果表明,三种形貌MOS的加入稍降低了基体的屈服强度,一方面是MOS与基体相容性差,另一方面归结于β-晶型PP生成;相比之下,MOSW加入能较好地保持PP基体的屈服强度和拉伸断裂韧性,且明显增强基体的模量,主要归因于MOSW较大的长径比;MOSP对基体的增韧效果更为明显,一方面是由于MOSP诱导生成β-晶型PP的效果强于MOSW和MOSS,另一方面则可能是由于MOSP较大的比表面积附着了较多的脂肪酸盐,其增塑效果更强。 Series of magnesium oxysulfate/polypropylene (MOS/PP) composites magnesium oxysulfate particle (MOSP), magnesium oxysulfate whisker (MOSW), and magnesium oxysulfate sector (MOSS) were prepared via melt blending method using magnesium oxysulfate (magnesium oxysulfate particle (MOSP), magnesium oxysulfate whisker (MOSW), and magnesium oxysulfate sector (MOSS)) as fillers, lauric acid (LA) as modifier and PP resin as the matrix. SEM results indicate that both modified MOSP and MOSW are fine dispersed in the PP matrix, whereas the incompatibility issue still exist. For MOSS/PP composites, MOSS with huge size and complicated morphology and partial dispersed MOSW are coexisted, with more interface defects observed. Wide angle X-ray diffraction (WXRD) results suggest that addition of MOS can induce the formation of β-crystal PP which is irrelevant to LA, especially for the MOSP/PP sample. The incorporation of three kinds of MOS slightly decreases yield strength of the PP matrix. One reason is the incompatibility between MOS and the PP matrix, and the formation of β-crystal is another important reason. In contrast, introducing MOSW can maintain the yield strength and tension fracture toughness and reinforce the modulus of PP matrix obviously, which is mainly due to the high aspect ratios of whisker morphology. In addition, the most obviously toughening effect happens on the MOSP/PP composites for two reasons. On the one hand, MOSP is more efficient for inducing β-crystal PP as compared with MOSW and MOSS. On the other hand, the more fatty acid salt attached to the surface of MOSP results in the stronger plastification effect to the PP matrix. 青海省自然科学基金(2014-ZJ-938Q);中国科学院西部之光(Y412031006)
[1] | 朱黎霞, 高世扬. Mg (OH)2·2MgSO4·22O 晶体的水热生长过程[J]. 物理化学学报, 2003, 19(3): 212-215. ZHU L X, GAO S Y. Hydrothermal crystal growth of Mg(OH)2·2MgSO4·2H2O[J]. Acta Physico-Chimica Sinica, 2003, 19(3): 212-215 (in Chinese). |
[2] | 党力, 乃学瑛, 董亚萍, 等. 微波法快速制备碱式硫酸镁晶须[J]. 人工晶体学报, 2016, 45(1): 21-27. DANG L, NAI X Y, DONG Y P, et al. Rapid synthesis of magnesium oxysulfate whisker by microwave method[J]. Journal of Synthetic Crystals, 2016, 45(1): 21-27 (in Chinese). |
[3] | RUNCEVSKI T, WU C, YU H, et al. Structural characterization of a new magnesium oxysulfate hydrate cement phase and its surface reactions with atmospheric carbon dioxide[J]. Journal of the American Ceramic Society, 2013, 96(11): 3609-3616. |
[4] | OTAKA S, MATSUNAMI T, TASAKA Y. Fibrous anhydrous magnesium oxysulfate and process for the preparation thereof: USA Patent, 5326548[P]. 1994-07-05. |
[5] | 姜玉芝, 张丽丽, 张忠阳, 等. 碱式硫酸镁晶须/聚丙烯复合材料力学性能的研究[J]. 沈阳理工大学学报, 2012, 31(4): 60-64. JIANG Y Z, ZHANG L L, ZHANG Z Y, et al. Study on the mechanical properties of magnesium oxysulfate whiskers and polypropylene composites[J]. Journal of Shenyang Ligong University, 2012, 31(4): 60-64 (in Chinese). |
[6] | 高传慧, 王婷, 徐磊, 等. 碱式硫酸镁晶须的表面改性及在聚丙烯中的应用机制[J]. 高校化学工程学报, 2014, 28(1): 143-148. GAO C H, WANG T, XU L, et al. Surface modification of magnesium hydroxide sulfate hydrate whiskers and its application mechanism in polypropylene[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(1): 143-148 (in Chinese). |
[7] | LU H D, HU Y, XIAO J F, et al. Magnesium hydroxide sulfate hydrate whisker flame retardant polyethylene/montmorillonite nanocomposites[J]. Journal of Material Science, 2006, 41(2): 363-367. |
[8] | TANG J G, WANG Y, LIU H Y, et al. Effect of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization[J]. Polymer, 2004, 45(7): 2081-2091. |
[9] | KHOSHKAVA V, KAMAL M R. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites[J]. Applied Material & Interface, 2014, 6(11): 8146-8157. |
[10] | DANG L, NAI X Y, ZHU D H, et al. Study on the mechanism of surface modification of magnesium oxysulfate whisker[J]. Applied Surface Science, 2014, 417: 325-331. |
[11] | 吴聪, 陈南春, 詹峰, 等. 改性介孔硅-ESO/聚丙烯三元体系复合材料增强增韧机制[J]. 复合材料学报, 2017, 34(4): 723-729. WU C, CHEN N C, ZANG F, et al. Reinforcing & toughening mechanisms of modified diatomite-epoxy soybean oil/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2017, 34(4): 723-729 (in Chinese). |
[12] | 丁茜, 章自寿, 罗建新, 等. 硅灰石填充β-聚丙烯基复合材料的增强增韧[J]. 复合材料学报, 2016, 33(9): 2061-2066. DING Q, ZHANG Z S, LUO J X, et al. Reinforcement and toughening of wollastonite filled β-polypropylene composites[J]. Acta Materiae Compositae Sinica, 2016, 33(9): 2061-2066 (in Chinese). |
[13] | TURNER-JONES A, AIZLEWOOD J, BECKETT D. Crystalline forms of isotactic polypropylene[J]. Die Makromolekulare Chemie, 1964, 75(1): 134-158. |
[14] | 谭晓明, 黄勇, 周亚洲. 聚丙烯离聚体的熔融法制备及其加工性能[J]. 信阳师范学院学报(自然科学版), 1997, 10(4): 71-74. TAN X M, HUANG Y, ZHOU Y Z. Preparation in melt and process properties of polypropylene ionomers[J]. Journal of Xinyang Teachers College (Natural Science Edition), 1997, 10(4): 71-74 (in Chinese). |
[15] | 吴成宝, 盖国胜, 杨玉芬, 等. 无机粒子填充聚丙烯复合材料弹性模量的预测模型及影响因素分析[J]. 材料导报, 2010, 8(24): 103-106. WU C B, GAI G S, YANG Y F, et al. Predicting model and influencing fators analysis of elastic modulus of PP/inorganic particle composites[J]. Materials Review, 2010, 8(24): 103-106 (in Chinese). |
[16] | IWAMOTO S, YAMAMOTO S, LEE S H, et al. Mechanical properties of polypropylene composites reinforced by surface-coated microfibrillated cellulose[J]. Composites Part A: Applied Science and Manufacturing, 2014, 59: 26-29. |
[17] | 中华人民共和国国家质量监督检验检疫总局. 塑料拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Plastics-Determination of tensile properties: GB/T 1040—2006[S]. Beijing: China Standards Press, 2008 (in Chinese). |
[18] | 中华人民共和国国家质量监督检验检疫总局. 硬质塑料简支梁冲击试验方法: GB/T 1043—1993[S]. 北京: 中国标准出版社, 1993. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Plastics-determination of charpy impact strength of rigid materials: GB/T 1043—93[S]. Beijing: China Standards Press, 1993 (in Chinese). |
[19] | ZENG A R, ZHENG Y Y, GUO Y, et al. Effect of tetra-needle-shaped zinc oxide whisker (T-ZnOw) on mechanical properties and crystallization behavior of isotactic polypropylene[J]. Material & Design, 2012, 34: 691-698. |
[20] | 张景云, 史观一, 曹友虹, 等. β晶型聚丙烯力学性质[J]. 高分子通讯, 1986(4): 241-244. ZHANG J Y, SHI Y G, CAO Y H, et al. The mechanical behaviors of β-form of isotactic polypropylene[J]. Polymer Communications, 1986(4): 241-244 (in Chinese). |
[21] | LIU B, ZHANG Y, WAN C Y, et al. Thermal stability, flame retardancy and rheological behavior of ABS filled with magnesium hydroxide sulfate hydrate whisker[J]. Polymer Bulletin, 2007, 58(4): 747-755. |
[22] | 李武. 无机晶须[M]. 北京: 化学工业出版社, 2005, 34-48. LI W. Inorganic whiskers[M]. Beijing: Chemical Industry Press, 2005, 34-48 (in Chinese). |