|
- 2018
碳纳米管-有机化蒙脱土多维纳米界面构筑及其对环氧树脂的增韧机制
|
Abstract:
分别采用混酸、环氧树脂(EP)和硅烷偶联剂对碳纳米管(CNTs)进行功能化处理,用十八烷基三甲基氯化铵对蒙脱土(MMT)进行有机化处理,将具有一维纳米尺度的CNTs和二维纳米尺度的有机化蒙脱土(OMMT)复合引入EP酸酐固化体系,通过溶液共混法制备纳米OMMT/EP、CNTs/EP、CNTs-OMMT/EP复合材料。使用简支梁冲击试验仪测试三种复合材料的冲击强度,并利用SEM观察纳米复合材料的冲击断面形貌。实验结果表明,当OMMT的含量为4wt%时,纳米OMMT/EP复合材料的冲击强度比未掺杂纳米组分的EP提高了16.7%。经硅烷偶联剂处理后的CNTs(Si-CNTs)能与EP基体形成良好界面,当Si-CNTs的含量为0.9wt%时,纳米Si-CNTs/EP复合材料冲击强度比未掺杂纳米组分的EP提高了84.0%。当OMMT的含量为4wt%、Si-CNTs的含量为0.9wt%时,纳米Si-CNTs-OMMT/EP复合材料的冲击强度比未掺杂纳米组分的EP提高了135.4%。管状CNTs和片层结构OMMT对EP的韧性具有协同提高作用。 Carbon nanotubes (CNTs) were respectively treated by mixed acid, epoxy resin (EP) and silane coupling agent. Montmorillonite (MMT) was modified by eighteen alkyl three methyl ammonium chloride. CNTs and organic montmorillonite (OMMT) were placed in EP cured by anhydride. Nano OMMT/EP, CNTs/EP and CNTs-OMMT/EP composites were prepared by method of solution blending. The impact strength of the three kinds of was tested by Charpy impact tester. The impact profile of the nano CNTs/EP, OMMT/EP and CNTs-OMMT/EP composites were observed by scanning electron microscopy. The experimental results show that when the mass fraction of OMMT is 4wt%, the impact strength of OMMT/EP composites is 16.7% higher than that of the pure EP. The interface between Si-CNTs and EP cured by anhydride is strong. When the mass fraction of Si-CNTs is 0.9wt%, the impact strength of Si-CNTs/EP composites is 84.0% higher than that of the pure EP. When the mass fraction of OMMT is 4wt% and the mass fraction of CNTs is 0.9wt%, the impact strength of Si-CNTs-OMMT/EP composites is 135.4% higher than that of the pure EP. CNTs and OMMT can synergistically enhance the toughness of EP. 黑龙江省博士后面上项目一等资助(LBH-Z16089);中国博士后面上项目一等资助(2017M610212);工程电介质及其应用教育部重点实验室前沿项目预研基金(2018EDAQY05);哈尔滨市科技创新人才(2017RAQXJ105);黑龙江省普通本科高等学校青年创新人才培养计划
[1] | 王海霞, 李振环, 程博闻. 环氧化功能CNTs改性氨基PPS[J]. 复合材料学报, 2016, 33(11):2468-2476. WANG H X, LI Z H, CHEN B W. Epoxy funtionalized carbon nanotubes modified amino substituted PPS[J]. Acta Materiae Compositae Sinica, 2016, 33(11):2468-2476(in Chinese). |
[2] | 卫保娟, 肖谭, 李雄俊, 等. 石墨烯与多壁CNTs增强EP复合材料的制备及性能[J]. 复合材料学报, 2012, 29(5):53-60. WEI B J, XIAO T, LI X J, et al. Graphene sheet multi-walled carbon nanotube functionalization composites mechanical properties[J]. Acta Materiae Compositae Sinica, 2012, 29(5):53-60(in Chinese). |
[3] | 樊序敏, 顾轶卓, 刘亚男, 等. CNTs浸润剂对碳纤维/EP界面性能的影响[J]. 复合材料学报, 2012, 29(4):17-22. FAN X M, GU Y Z, LIU Y N, el al. Effects of wetting agent containing carbon nanotubes on interfacial property of carbon fiber/epoxy resin[J]. Acta Materiae Compositae Sinica, 2012, 29(4):17-22(in Chinese). |
[4] | 杨旭东, 邹田春, 陈亚军, 等. CNTs和氧化铝混杂增强铝基复合材料的制备及力学性能[J]. 材料工程, 2016, 44(7):67-72. YANG X D, ZHOU T C, CHEN Y J, et al. Fabrication and mechanical properties of aluminum matrix composites reinforced with carbon nanotubes and alumina[J]. Journal of Materials Engineering, 2016, 44(7):67-72(in Chinese). |
[5] | 杨益, 杨胜良. CNTs增强金属基复合材料的研究现状及展望[J]. 材料导报, 2007, 21(5):182-184. YANG Y, YANG S L. Research status and development prospect of mental matrix composite reinforced by carbon nanotubes[J]. Review, 2007, 21(5):182-184(in Chinese). |
[6] | CIECIERSKA E, BOCZKOWSKA A, KURZYDLOWSKI K J, et al. The effect of carbon nanotubes on epoxy matrix nanocomposites[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(2):1019-1024. |
[7] | YANG J P, CHEN Z K, FENG Q P, et al. Cryogenic mechanical behaviors of carbon nanotube reinforced composites based on modified epoxy by poly(ethersulfone)[J]. Composites Part B:Engineering, 2012, 43(1):22-26. |
[8] | HUANG Y Y, TERENTJEV E M. Dispersion of carbon nanotubes:Mixing, sonication, stabilization, and composite properties[J]. Polymers, 2012, 4(1):275-295. |
[9] | MAHMOOD N, ISLAM M, HAMEED A, et al. Polyamide 6/multiwalled carbon nanotubes nanocomposites with modified morphology and thermal properties[J]. Polymers, 2013, 5(4):1380-1391. |
[10] | JAGTAP S B, RAO V S, BARMAN S, et al. Nanocomposites based on epoxy resin and organoclay functionalized with a reactive modifier having structural similarity with the curing agent[J]. Polymer, 2015, 63:41-51. |
[11] | CHENG H C, HSU Y C, WU C H, et al. Molecular dynamics study of interfacial bonding strength of self-assembled monolayer-coated Au-epoxy and Au-Au systems[J]. Applied Surface Science, 2011, 257(20):8665-8674. |
[12] | YONG G, PENG H, JIE L, et al. Effects of surface modification, carbon nanofiber concentration, and dispersion time on the mechanical properties of carbon-nanofiber-polycarbonate composites[J]. Journal of Applied Polymer Science, 2010, 103(6):3792-3797. |
[13] | NIE Y, HUBERT T. Surface modification of carbon nanofibers by glycidoxysilane for altering the conductive and mechanical properties of epoxy composites[J]. Composites Part A:Applied Science & Manufacturing, 2012, 43(8):1357-1364. |
[14] | ZU M, LI Q, ZHU Y, et al. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test[J]. Carbon, 2012, 50(3):1271-1279. |
[15] | DENG F, LU W, ZHAO H, et al. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite[J]. Carbon, 2011, 49(5):1752-1757. |
[16] | MA J, LARSEN R M. Effect of concentration and surface modification of single walled carbon nanotubes on mechanical properties of epoxy composites[J]. Fibers & Polymers, 2014, 15(10):2169-2174. |
[17] | ZHENG Q B, XUE Q Z, YAN K Y, et al. Effect of chemisorption on the interfacial bonding characteristics of carbon nanotube-polymer composites[J]. Polymer, 2008, 49(3):800-808. |
[18] | ZEYNALOV E, FRIEDRICH J, MEYER-PLATH A, et al. Plasma-chemically brominated single-walled carbon nanotubes as novel catalysts for oil hydrocarbons aerobic oxidation[J]. Applied Catalysis A:General, 2013, 454(6):115-118. |
[19] | INAM F, VO T, JONES J P, et al. Effect of carbon nanotube lengths on the mechanical properties of epoxy resin:An experimental study[J]. Journal of Composite Materials, 2013, 47(19):2321-2330. |
[20] | GUO Y, CHO H, SHI D, et al. Effects of plasma surface modification on interfacial behaviors and mechanical properties of carbon nanotube-Al2O3, nanocomposites[J]. Applied Physics Letters, 2007, 91(26):1-3. |
[21] | 中国国家标准化管理委员会. 塑料简支梁冲击性能的测定第1部分:非仪器化冲击试验:GB/T 1043-2008[S]. 北京:中国标准出版社, 2009. Standardization Administration of the People's Republic of China. Plastics:Determination of charpy impact properties Part 1:Non-instrumented impact test:GB/T 1043-2008[S]. Beijing:China Standards Press, 2009(in Chinese). |
[22] | ⅡJIMA S. Helical microtubes of graphite carbon[J]. Nature, 1991, 354(6348):56-58. |
[23] | EATEMAD A, DARAEE H, KARIMKHANLOO H, et al. Carbon nanotubes:Properties, synthesis, purification, and medical applications[J]. Nanoscale Research Letters, 2014, 9(1):393. |
[24] | MANSOOR M, SHAHID M, HABIB A. Strengthening of bisphenol-a epoxy resin by the addition of multi-wall carbon nanotubes[J]. Arabian Journal for Science and Engineering, 2014, 39(8):6411-6420. |
[25] | WAN Q, LIU M, TIAN J, et al. Surface modification of carbon nanotubes by combination of mussel inspired chemistry and SET-LRP[J]. Polymer Chemistry, 2015, 6(10):1786-1792. |
[26] | ILCIKOVA M, MOSNACEK J, MRLIK M, et al. Influence of surface modification of carbon nanotubes on interactions with polystyrene-b-polyisoprene-b-polystyrene matrix and its photo-actuation properties[J]. Polymers for Advanced Technologies, 2014, 25(11):1293-1300. |
[27] | KEJING Y U, JIE Z, JIA Y C, et al. Surface modification of carbon nanotubes and their application for epoxy resin composites[J]. Journal of Functional Materials, 2012, 43(22):3131-3134. |