全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

多损伤复合材料加筋壁板高周疲劳特性及剩余压缩强度
High cycle fatigue characteristics and residual compressive strength of composite stiffened panels with multi-damage

DOI: 10.13801/j.cnki.fhclxb.20150410.006

Keywords: 复合材料,加筋壁板,冲击损伤,高周疲劳特性,剩余压缩强度
composites
,stiffened panels,impact damage,high cycle fatigue characteristics,residual compressive strength

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究常用于飞机垂尾的复合材料加筋壁板的冲击疲劳特性, 设计了该型加筋壁板多点冲击试验、高周疲劳试验及剩余压缩强度试验.讨论了不同冲击能量对筋条边缘冲击损伤的影响, 及施加低应力水平的疲劳载荷后各冲击损伤区域的扩展情况, 对比分析了疲劳对冲击后剩余压缩强度的影响.结果表明:40 J能量冲击后的损伤面积和凹坑深度较大, C扫描损伤形貌很不规则.100万次低应力疲劳后主损伤区附近衍生出新损伤, 导致压缩破坏时产生向上、下夹具扩展的裂痕.该型加筋壁板疲劳后破坏载荷保持率为95.6%, 有较好的抗冲击疲劳能力, 为加筋壁板耐久性及后屈曲设计提供了思路. To study the impact and fatigue properties of composite stiffened panels, which are widely used in aircraft vertical tail, the multi-impact, high cycle fatigue and residual compressive strength tests were designed based on the composite stiffened panels. The effects of different impact energy on impact damage of stiffener edge were discussed, and damage area development condition under fatigue load of low stress level was also studied. The effect of fatigue on residual compressive strength after impact was given. Results show that the damage areas and dent depth of 40 J impact energy are large, and the damage morphologies of C-scan test are more irregular. The new damage is promoted from main damage area after one million low stress fatigue, and the crack induced by compression failure is propagated to the top and bottom fixed jig. The stiffened panels exhibit better impact and fatigue damage resistance since the retention rate of breaking load after fatigue is about 95.6%. The results can be used for durability and postbuckling design of stiffened panels. 国家自然科学基金(51201182)

References

[1]  Yang G S. Damage mechanics and damage in composite material[M]. Beijing: National Defense Industry Press, 1995: 119-121 (in Chinese). 杨光松. 损伤力学与复合材料损伤[M]. 北京: 国防工业出版社出版, 1995: 119-121.
[2]  Ramkumar R L. Effect of low-velocity impact damage on the fatigue behavior of graphite/epoxy laminates[S]. Philadelphia: ASTM, 1983.
[3]  Nixon-Pearson O J, Hallett S R, Withers P J, et al. Damage development in open-hole composite specimens in fatigue. Part 1: Experiment investigation[J]. Composite Structures, 2013, 106 (12): 882-889.
[4]  Zhu W Y, Xu X W. Experiment research and fatigue life prediction of low-velocity-impacted laminate under compressive-compressive fatigue load[J]. Engineering Mechanics, 2013, 30(3): 412-414 (in Chinese). 朱炜垚, 许希武. 复合材料层合板低速冲击后压-压疲劳试验研究及寿命预报[J]. 工程力学, 2013, 30(3): 412-414.
[5]  Zhu H Y, Wu B C, Zhang D X, et al. Effect of void on the interlaminar shear fatigue of carbon fiber/epoxy composite laminates[J]. Acta Materiae Compositae Sinica, 2010, 27 (6): 34-36 (in Chinese). 朱洪艳, 吴宝昌, 张东兴, 等. 孔隙对碳纤维/环氧复合材料层合板层间剪切疲劳性能的影响[J]. 复合材料学报, 2010, 27(6): 34-36.
[6]  Wang F F, Cui D G, Xiong Q, et al. Engineering analysis of post-buckling loading capability for composite stiffened panels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 494-497 (in Chinese). 王菲菲, 崔德刚, 熊强, 等. 复合材料加筋板后屈曲承载能力工程分析方法[J]. 北京航空航天大学学报, 2013, 39(4): 494-497.
[7]  Caputo F, Esposito R, Peruni P. Numerical-experiental investigation on post-buckled stiffened composite panels[J]. Composite Structures, 2002, 88(3): 347-357.
[8]  Shao Q, He Y T, Zhang T, et al. Experimental research on low-velocity impact and residual compressive strength of composite stiffened panels[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 200-206 (in Chinese). 邵青, 何宇廷, 张腾, 等. 复合材料加筋板低速冲击损伤及剩余压缩强度试验研究[J]. 复合材料学报, 2014, 31(1), 200-206.
[9]  China Aviation Academy. Composite structures design manual[M]. Beijing: Aviation Industry Press, 2001: 477-478 (in Chinese). 中国航空研究院. 复合材料结构设计手册[M]. 北京: 航空工业出版社, 2001: 477-478.
[10]  Mohammad M, Richard A S. The effects of hail damage on the fatigue strength of a graphite/epoxy composite laminate[J]. Composite Structures, 1998, 42(2): 101-106.
[11]  Xu Y. Research on impact damage of laminates and fatigue life of impacted laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese). 徐颖. 复合材料层合板冲击损伤及冲击后疲劳寿命研究[D]. 南京: 南京航空航天大学, 2007.
[12]  Milan M, Thomas H, Greg P C, et al. Effect of loading parameters on the fatigue behavior of impact damaged composite laminates[J]. Composites Science and Technology, 1999, 59 (14): 2059-2078.
[13]  Melin L G, Sch?n J, Nyman T. Fatigue testing and buckling characteristics of impacted composite specimens[J]. International Journal of Fatigue, 2002, 24(2-4): 263-272.
[14]  Tai N H, Yip M C, Lin J L. Effects of low-energy impact on the fatigue behavior of carbon/epoxy composites[J]. Composites Science and Technology, 1998, 58(1): 1-8.
[15]  Lin Z Y, Xu X W, Zhu W Y. Experimental study on impact damage characteristics and residual compressive strength of composite laminates[J]. Journal of Aeronautical Materials, 2011, 31(1): 75-77 (in Chinese). 林智育, 许希武, 朱伟垚. 复合材料层板冲击损伤特性及冲击后压缩强度研究[J]. 航空材料学报, 2011, 31(1): 75-77.
[16]  Koo J M, Choi J H, Seok C S. Prediction of post-impact residual strength and fatigue characteristics after impact of CFRP composite structures[J]. Composite Part B: Engineering, 2014, 61(5): 300-306.
[17]  American Society for Testing and Materials International. ASTM D7136/D7136M-12 Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event[S]. West Conshohocken: ASTM International, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133