全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

聚硅氧烷型交联剂的制备及其在聚合物多孔材料中的应用
Preparation of polysiloxane crosslinking agent and its application in polymer porous materials

DOI: 10.13801/j.cnki.fhclxb.20150302.004

Keywords: 有机硅树脂,乳液聚合,聚合物多孔材料,形貌,性能
organic silicone resin
,emulsion polymerization,polymer porous material,morphology,property

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了获得性能优异的聚合物多孔材料, 首先, 在封端剂六甲基二硅氧烷(MM)的存在下, 通过硅酸钠与甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)的水解缩聚反应制备了含甲基丙烯酰氧基丙基官能基团的MTQ有机硅树脂;然后, 以MTQ硅树脂为交联剂, 丙烯酸异辛酯(EHA)为单体, 利用高内相比乳液模板法制备了MTQ硅树脂/聚丙烯酸异辛酯(PEHA)聚合物多孔材料;最后, 对该多孔材料的孔结构、压缩性能和热稳定性进行了研究.结果表明:采用MTQ硅树脂作为交联剂制备得到的MTQ硅树脂/PEHA聚合物多孔材料的泡孔孔径介于4~10 μm范围内, 毛孔孔径分布于0.3~2.0 μm区间内;泡孔之间紧密相连, 毛孔均匀分布且通道较窄.MTQ硅树脂含量对MTQ硅树脂/PEHA聚合物多孔材料的比表面积和孔容的影响较小, 但可显著提高聚合物多孔材料的热稳定性和压缩强度;在氮气氛围下, 聚合物多孔材料的最大热分解速率温度可达411.5 ℃. In order to obtain the polymer porous materials with excellent performances, under the existence of end-capping reagent hexamethyldisiloxane (MM), MTQ organic silicone resin with methacryloxypropyl functional group was prepared by hydrolytic condensation polymerization reaction between sodium silicate and methacryloxypropyltrimethoxylsilane (MPS) firstly. Then, the MTQ silicone resin was used as crosslinking agent and 2-ethylhexyl acrylate (EHA) was used as monomer, MTQ silicone resin/poly 2-ethylhexyl acrylate (PEHA) polymer porous materials were prepared by high internal phase emulsions template method. Finally, the pore structure, compressive properties and thermal stability of the porous materials were investigated. The results show that the voids diameter of MTQ silicone resin/PEHA polymer porous materials prepared by using MTQ silicone resin as crosslinking agent is in the range of 4-10 μm, and the pores diameter distributes in the range of 0.3-2.0 μm. All of the voids are linked closely, the pores are uniform distributed and the channels are narrow. MTQ silicone resin content has little effects on the specific surface area and pore volume of MTQ silicone resin/PEHA polymer porous materials, but can enhance the thermal stability and compressive strength of polymer porous materials significantly, the temperature of maximum thermal decomposition rate is up to 411.5 ℃ under nitrogen atmosphere. 国家自然科学基金(51203047)

References

[1]  Pierre S J, Thies J C, Dureault A, et al. Covalent enzyme immobilization onto photopolymerized highly porous monoliths[J]. Advanced Materials, 2006, 18(14): 1822-1826.
[2]  Liu B, Fu X M, Wang D, et al. Synthesis of organic inorganic hybrid microspheres and the corresponding mesoporous silica nanoparticles[J]. Journal of Colloid and Interface Science, 2013, 411: 98-104.
[3]  Sun P, Zhao W, Cao Y, et al. Porous SnO2 hierarchical nanosheets: Hydrothermal preparation, growth mechanism, and gas sensing properties[J]. CrystEngComm, 2011, 13(11): 3718-3724.
[4]  Mert E H, Yildirim H, üzümcü A T, et al. Synthesis and characterization of magnetic polyHIPE with humic acid surface modified magnetic iron oxide nanoparticles[J]. Reactive & Functional Polymers, 2013, 73(1): 175-181.
[5]  Lucchesi C, Pascual S, Dujardin G, et al. New functionalized polyHIPE materials used as amine scavengers in batch and flow-through processes[J]. Reactive and Functional Polymers, 2008, 68(1): 97-102.
[6]  Jia X, Sun Z G, Guang C L, et al. Progress of porous materials prepared by high internal phase emulsion templates[J]. Chinese Journal of Colloid & Polymer, 2014, 32(3): 141-144 (in Chinese). 贾雪, 孙争光, 官成兰, 等. 高内相乳液模板法多孔材料的研究进展[J]. 胶体与聚合物, 2014, 32(3): 141-144.
[7]  Kim T K, Yoon J J, Lee D S, et al. Gas foamed open porous biodegradable polymeric microspheres[J]. Biomaterials, 2006, 27(2): 152-159.
[8]  Wang H B, He S Q, Zhao D M, et al. Preparation and biology security of the porous carboxymethyl chitosan/nano hydroxyapatite scaffold biocomposites[J]. Acta Materiae Compositae Sinica, 2008, 25(6): 88-92 (in Chinese). 王海斌, 赫淑倩, 赵冬梅, 等. 羧甲基壳聚糖/纳米羟基磷灰石复合支架材料的制备及生物安全性[J]. 复合材料学报, 2008, 25(6): 88-92.
[9]  Feng S H, Xu R R. New materials in hydrothermal synthesis[J]. Accounts of Chemical Research, 2001, 34(3): 239-247.
[10]  Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. Cambridge: Cambridge University Press, 1999: 510-520.
[11]  Tu W Y, Zhang H Y, Lin J, et al. Preparation and properties of multilayer graphite/silicon resin thermal conductive materials[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 70-74 (in Chinese). 涂文英, 张海燕, 林锦, 等. 多层石墨/硅树脂导热复合材料的制备与性能[J]. 复合材料学报, 2013, 30(2): 70-74.
[12]  Wu D, Xu F, Sun B, et al. Design and preparation of porous polymers[J]. Chemical Reviews, 2012, 112(7): 3959-4015.
[13]  Andrea B, Neil R C. Morphology and surface area of emulsion-derived (polyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: Span 80 as surfactant[J]. Macromolecules, 2004, 37(9): 3188-3201.
[14]  Normatov J, Silverstein M S. Silsesquioxane-crosslinked porous nanocomposites synthesized within high internal phase emulsions[J]. Macromolecules, 2007, 40(23): 8329-8335.
[15]  Tang M F, Fan X D, Wang Z D, et al. Synthesis of organosilicon monomer with high silicon content and study of their properties of modified acrylate emulsion[J]. Polymer Materials Science and Engineering, 2006, 22(1): 44-47 (in Chinese). 唐敏峰, 范晓东, 王召娣, 等. 新型支化有机硅单体的合成及其硅丙乳液的研究[J]. 高分子材料与工程, 2006, 22(1): 44-47.
[16]  Sergey G, Vasil'ev V I, Volkov E A, et al. A solid-state NMR investigation of MQ silicone copolymers[J]. Applied Magnetic Resonance, 2013, 44(9): 1015-1025.
[17]  Andrea B, Neil R C. Morphology and surface area of emulsion-derived (polyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: Three-component surfactant system[J]. Macromolecules, 2004, 37(9): 3202-3213.
[18]  Sergienko A Y, Tai H, Narkis M, et al. Polymerized high internal-phase emulsions: Properties and interaction with water[J]. Journal of Applied Polymer Science, 2002, 84(11): 2018-2027.
[19]  Neil R C, Andrea B J. The influence of porogen type on the porosity, surface area and morphology of poly(divinylbenzene) polyHIPE foams[J]. Chemistry of Materials, 2000, 10(11): 2466-2472.
[20]  Alikhani M, Moghbeli M R. Ion-exchange polyHIPE type membrane for removing nitrate ions: Preparation, characterization, kinetics and adsorption studies[J]. Chemical Engineering Journal, 2014, 239: 93-104.
[21]  Luo X G, Chen X F, Li Y L, et al. Preparation of collagen modified bioactive glass/poly(ε-caprolactone) porous composites for bone tissue repairing[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 98-103 (in Chinese). 罗小刚, 陈晓峰, 李玉莉, 等. 胶原改性的生物活性玻璃/聚己内酯多孔骨修复材料的制备[J]. 复合材料学报, 2011, 28(6): 98-103.
[22]  Zhu F, Zhang G Y, Wang Z Z, et al. Research on self-crosslinkable γ-methacryloxypropyltrimethoxysilane modified acrylic latex by miniemulsion polymerization[J]. Polymer Materials Science and Engineering, 2007, 23(4): 82-85 (in Chinese). 祝方, 张高勇, 王增长, 等. 自交联型γ-甲基丙烯酰氧基丙基三甲氧基硅烷改性丙烯酸酯细乳液的合成与性能[J]. 高分子材料与工程, 2007, 23(4): 82-85.
[23]  Tai H, Sergienko A, Silverstein M S. High internal phase emulsion foams: Copolymers and interpenetrating polymer networks[J]. Polymer Engineering and Science, 2001, 41(9): 1540-1552.
[24]  Luo Y R. Comprehensive handbook of chemical bond energies[M]. Beijing: Science Press, 2005: 22-277 (in Chinese). 罗渝然. 化学键能数据手册[M]. 北京: 科学出版社, 2005: 22-277.
[25]  Normatov J, Silverstein M S. Interconnected silsesquioxane—Organic networks in porous nanocomposites synthesized within high internal phase emulsions[J]. Chemistry of Materials, 2008, 20(4): 1571-1577.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133