|
- 2015
基于应变不变量失效理论的碳纤维增强树脂基复合材料层合板开孔结构压缩损伤模拟
|
Abstract:
应变不变量失效理论(SIFT)是一种新型的基于物理失效模式的复合材料强度理论, 被广泛应用于复合材料结构失效分析.首先, 为了提高理论分析的精度, SIFT被扩展用于分析碳纤维增强树脂基复合材料(CFRP)层合板开孔结构的静载压缩逐步失效机制和强度.开发的SIFT实施方法包括材料强度表征和结构强度预测两个部分.结构强度预测是基于ABAQUS平台并使用Fortran语言编写用户自定义材料子程序(UMAT)实现的.随后, 将SIFT预测值与经典复合材料强度理论Tsai-Wu和Hashin理论的预测结果和试验结果进行了对比, 结果显示SIFT预测的精度最高.同时, 基于SIFT对静载压缩下的AS4/3501-6层合板开孔结构从初始失效到最终失效的失效机制演变进行了详细的分析.最后, 将SIFT预测的AS4/3501-6层合板开孔结构静载压缩的失效机制与试验结果进行了对比.结果表明SIFT预测的逐步失效机制与试验结果相吻合, 所得结论为CFRP结构强度的预测提供了新思路. Strain invariant failure theory (SIFT) is a new type of strength theory for composites based on physical failure mode, which is applied to the failure analysis of composite structures widely. In order to improve the accuracy of theoretical analysis, SIFT was extended to be used to analyze the static loading compressive progressive failure mechanism and strength for carbon fiber reinforced polymer (CFRP) composite laminate open-hole structures firstly. The implementation methods of developed SIFT include two parts of material strength characterization and structure strength prediction. The structure strength prediction based on the ABAQUS platform and was realized by using the user defined material subroutine (UMAT) wrote by Fortran scripts. Then, the predicted values of SIFT as well as the predicted results of classical composites strength theories such as Tsai-Wu and Hashin theories were compared with the testing results, and the results showed that the accuracy of SIFT prediction was the best. Meanwhile, based on SIFT, the failure mechanisms evolution from initial failure to final failure of AS4/3501-6 laminate open-hole structures under static loading compression were analyzed in details. Finally, the static loading compressive failure mechanisms of AS4/3501-6 laminate open-hole structures predicted by SIFT were compared with testing results. The results show that the progressive failure mechanisms predicted by SIFT agree well with the testing results. The obtained conclusions provide new thoughts for the strength prediction of CFRP structures.
[1] | Du S Y, Guan Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10 (in Chinese). 杜善义, 关志东. 我国大型客机先进复合材料应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. |
[2] | Tsai S W, Wu E M. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80. |
[3] | Zhang L Q, Jin R G, Geng H P, et al. Study on the theory of strength of short fiber/rubber composites I prediction of longitudinal tensile strength[J]. Acta Materiae Compositae Sinica, 1998, 15(4): 89-96 (in Chinese). 张立群, 金日光, 耿海萍, 等. 短纤维橡胶复合材料强度的理论研究I纵向拉伸强度的理论预测[J]. 复合材料学报, 1998, 15(4): 89-96. |
[4] | Herakovich C T. Mechanics of composites: A historical review[J]. Mechanics Research Communications, 2012, 41: 1-20. |
[5] | Li W N, Cai H N, Zheng J. Characterization of strength of carbon fiber reinforced polymer composite based on micromechanics[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 244-251 (in Chinese). 李望南, 蔡洪能, 郑杰. 基于宏微观分析的碳纤维增强高分子复合材料强度性能表征[J]. 复合材料学报, 2013, 30(1): 244-251. |
[6] | Li X, Guan Z D, Liu L, et al. Damage simulation of composite materials based onstrain invariant failure theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2): 190-195 (in Chinese). 李星, 关志东, 刘璐, 等. 基于应变不变量失效理论的复合材料损伤模拟[J]. 北京航空航天大学学报, 2013, 39(2): 190-195. |
[7] | International Organization for Standardization. ISO 527-5 Plastics—Determination of tensile properties—Part5: Test conditions for unidirectional fibre-reinforced plastic composites[S]. Geneva: International Organization for Standardization, 2009. |
[8] | American Society for Testing Materials International. ASTM D 6484/6484M-04 Standard test method for open-hole compressive strength of polymer matrix composite laminates[S]. West Conshohocken: ASTM International, 2004. |
[9] | Li Z S, Guan Z D, He W. Strain invariant failure theory invariant properties of domestic carbon fiber/resin composites[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 192-196 (in Chinese). 黎增山, 关志东, 何为. 国产碳纤维增强树脂基复合材料应变不变量性能[J]. 复合材料学报, 2011, 28(5): 192-196. |
[10] | McCarthy C T, O'Higgins R M, Frizzell R M. A cubic spline implementation of non-linear shear behavior in three-dimensional progressive damage models for composite laminates[J]. Composite Structures, 2010, 92(1): 173-181. |
[11] | Tsai S W. Strength characteristics of composite materials, NASA-CR-224[R]. Washington D. C. : National Aeronautics and Space Administration, 1965. |
[12] | Chiang M Y M, Wang X F, Schultheisz C R, et al. Prediction and three-dimensional Monte-Carlo simulation for tensile properties of unidirectional hybrid composites[J]. Composites Science and Technology, 2005, 65(11-12): 1719-1727. |
[13] | Gosse J H, Christensen S. Strain invariant failure criteria for polymers in composite materials[C]//Collection of Technical Papers-42th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: American Institution of Aeronautics and Astronautics, 2001: 45-55. |
[14] | Kang J, Guan Z D, Li Z S, et al. Long-term open-hole compression strength prediction of composite laminates[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(11): 1555-1562 (in Chinese). 康军, 关志东, 黎增山, 等. 复合材料开孔层压板压缩长期强度预测[J]. 北京航空航天大学学报, 2014, 40(11): 1555-1562. |
[15] | Kachanov L M. Rupture time under creep conditions[J]. International Journal of Fracture, 1999, 97(1-4): 11-18. |
[16] | Schuecker C, Pettermann H E. A continuum damage model for fiber reinforced laminates based on ply failure mechanisms[J]. Composite Structures, 2006, 76(1): 162-173. |
[17] | Li W N, Cai H N, Li C, et al. Static tensile behavior of the single-lap bolted composite joints based on micro-mechanics of failure[J]. Acta Materiae Compositae Sinica, 2013, 30(Suppl.1): 240-246 (in Chinese). 李望南, 蔡洪能, 李超, 等. 基于微观力学失效理论的复合材料单钉螺栓连接结构拉伸行为预测[J]. 复合材料学报, 2013, 30(增刊1): 240-246. |