全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

尼龙66纤维/6061铝合金复合板静电植绒工艺及隔声性能
Electrostatic flocking technology and sound insulation properties of nylon 66 fibers/aluminium alloy 6061 composite plates

DOI: 10.13801/j.cnki.fhclxb.20150210.001

Keywords: 静电植绒,尼龙66纤维,植绒面密度,混响室-消声室法,隔声性能
electrostatic flocking
,nylon 66 fiber,flocking areal density,reverberation-anechoic chamber method,sound insulation property

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究不同植绒工艺条件下尼龙66纤维/6061铝合金复合板的植绒性能与隔声性能, 首先, 采用静电植绒工艺将6061铝合金板与尼龙66纤维复合, 制成隔音复合板;然后, 研究了植绒时间、植绒电压、极板间距以及胶黏剂涂覆量等工艺参数对植绒面密度和植绒纤维耐磨性能的影响;最后, 利用混响室-消声室法研究了尼龙66纤维/6061铝合金复合板在不同入射声频下和不同纤维结构参数时的隔声性能.结果表明:在0~40 s植绒时间范围内, 随着植绒时间的延长, 植绒面密度持续增大, 而后保持不变;同时, 在0~90 kV电压范围内, 随着电压的增加, 植绒面密度连续增大, 而后因极板间距不同植绒面密度增大或减小;植绒纤维的耐磨性能随胶黏剂涂覆量的增加而提高, 但当涂覆量超过155 g/m2后会产生气泡;当植绒时间为40 s、植绒电压为90 kV、极板间距为11.5 cm且胶黏剂涂覆量为155 g/m2时, 尼龙66纤维/6061铝合金复合板的性能最好.该复合板具有较高的中高频隔声性能, 隔声量在500~1 600 Hz频率范围内满足6 dB/倍频程规律;在2 000 Hz后出现吻合效应.提高植绒面密度以及减小尼龙66纤维直径均可增大该尼龙66纤维/6061铝合金复合板的隔声量.研究结论可为建筑用新型隔音复合材料的开发与应用奠定基础. In order to investigate the flocking performances and sound insulating properties of nylon 66 fibers/aluminium alloy 6061 composite plates under different flocking technology conditions, aluminium alloy 6061 plates and nylon 66 fibers were composited to prepare the sound insulation composite plates by electrostatic flocking technology. Then, the effects of processing parameters such as flocking time, flocking voltage, plate distance and adhesive coating amount et al on flocking areal density and wearability of flocking fibers were investigated. Finally, the sound insulation properties of nylon 66 fibers/aluminium alloy 6061 composite plates under different frequencies of incoming audio and with different structural parameters of fibers were investigated by reverberation-anechoic chamber method. The results show that in the flocking time range of 0-40 s, the flocking areal density increases continuously with the flocking time increasing and then remains unchanged. While in the voltage range of 0-90 kV, with the increasing of voltage, flocking areal density increases continuously and then increases or decreases for the difference of plate distance. Wearability of flocking fibers increases with the increasing of adhesive coating amount, but after the coating amount surpasses 155 g/m2, the gas bubbles generate. When the flocking time is 40 s, flocking voltage is 90 kV, plate distance is 11.5 cm and adhesive coating amount is 155 g/m2, the nylon 66 fibers/aluminium alloy 6061 composite plates have the best properties. The composite plates have preferable sound insulating properties at medium and high frequencies, sound reduction index goes with the rule of 6 dB/octave within the frequency range of 500-1 600 Hz, and the tally effect occurs after 2 000 Hz. The sound reduction index of the nylon 66 fibers/aluminium alloy 6061 composite plates can be enhanced by increasing the flocking areal density and decreasing the nylon 66 fiber diameter. The research conclusions can lay the foundation for the

References

[1]  Rana A K, Mandal A, Bandyopadhyay S. Short jute fiber reinforced polypropylene composites: Effect of compatibiliser, impact modifier and fiber loading[J]. Composites Science and Technology, 2003, 63(6): 801-806.
[2]  Niu B, Olhoff N, Lund E, et al. Discrete material optimization of vibrating laminated composite plates for minimum sound radiation[J]. International Journal of Solids and Structures, 2010, 47(16): 2097-2114.
[3]  Li C H, Lin X W, Cheng X S. Research of nylon66 composites[J]. Guangzhou Chemical Industry, 2012, 40(22): 34-36 (in Chinese). 李灿浩, 林星五, 程新生. 尼龙66复合材料研究进展[J]. 广州化工, 2012, 40(22): 34-36.
[4]  Yang S Z, Yu J Y, Liu L F, et al. Investigation on electrostatic flocking process of sea-island fiber[J]. Joumal of Textile Research, 2007, 28(7): 9-18 (in Chinese). 杨书珍, 俞建勇, 刘丽芳, 等. 海岛纤维静电植绒工艺研究[J]. 纺织学报, 2007, 28(7): 9-18.
[5]  Li H S, Qian K, Cao H J, et al. Experimental study on the sound insulation property of integrated hollow core sandwich composites[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 167-170 (in Chinese). 李鸿顺, 钱坤, 曹海建, 等. 整体中空复合材料隔声性能的实验研究[J]. 复合材料学报, 2011, 28(4): 167-170.
[6]  Cui B X. Motion of the short fibre in the electric field[J]. Journal of Liaocheng Teachers University: Natural Science Edition, 1998, 11(3): 43-46 (in Chinese). 崔宝欣. 短纤维在静电场中的力学行为[J]. 聊城师院学报: 自然科学版, 1998, 11(3): 43-46.
[7]  Zhang Q, Xu Y. Motion pattern of fibers in electric field[J]. Journal of China Textile University, 1989, 15(2): 14-21 (in Chinese). 张渠, 徐盈. 纤维在电场中的运动规律[J]. 中国纺织大学学报, 1989, 15(2): 14-21.
[8]  Viveros K C, Ambriz R R, Amrouche A, et al. Cold hole expansion effect on the fatigue crack growth in welds of a 6061-T6 aluminum alloy[J]. Journal of Materials Processing Technology, 2014, 214(11): 2606-2616.
[9]  Seepersad C C, Dempsey B M, Allen J K, et al. Design of multifunctional honeycomb materials[J]. AIAA Journal, 2004, 42(5): 1025-1033.
[10]  Ayub M, Fouladi M H, Ghassem M, et al. Analysis on multiple perforated plate sound absorber made of coir fiber[J]. International Journal of Acoustics and Vibration, 2014, 19(3): 203-211.
[11]  Narang P P. Material parameter selection in polyester fibre insulation for sound transmission and absorption[J]. Applied Acoustics, 1995, 45(4): 335-358.
[12]  Coldwell R L, Hersh S P. The influence of processing variales on the properties of flocked fabrics[J]. IEEE Transactions on Industry, 1978, IA-14(2): 175-182.
[13]  Qin C F, Guo X L, Li Y. Investigation on electrostatic flocking process of activated carbon fiber[J]. Journal of Xi'an Polytechnic University, 2010, 24(1): 9-12 (in Chinese). 秦姹芳, 郭晓玲, 李勇. 活性炭纤维静电植绒工艺研究[J]. 西安工程大学学报, 2010, 24(1): 9-12.
[14]  Liu Z Q, Yu J Y, Yang J S. A fabric flocking density analysis[J]. Shanghai Textile Science & Technology, 2005, 33(10): 19-20 (in Chinese). 刘智清, 俞建勇, 杨纪松. 植绒织物植绒密度的分析研究[J]. 上海纺织科技, 2005, 33(10): 19-20.
[15]  Fu Y Q, Ni Q Q, Yao Y F, et al. Sound insulation performance of a glass fabric/PVC composite material[J]. Acta Materiae Compositae Sinica, 2005, 22(5): 94-99 (in Chinese). 傅雅琴, 倪庆清, 姚跃飞, 等. 玻璃纤维织物/聚氯乙烯复合材料隔声性能[J]. 复合材料学报, 2005, 22(5): 94-99.
[16]  General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 19889—2005 Acoustics—Measurement of sound insulation in buildings and of building elements[S]. Beijing: Standards Press of China, 2005 (in Chinese). 中华人民共和国国家质量监督检验检疫总局. GB/T 19889—2005 声学 建筑和建筑构件隔声测量[S]. 北京: 中国标准出版社, 2005.
[17]  Lu E, Kurahashi N, Ni Q Q, et al. Development of flexible soundproof materials[J]. Journal of the Society of Materials Science, 2006, 55(6): 583-588.
[18]  Fu Y Q, Zhu C Y, Yu L M, et al. Experimental study on effects of arrangement of reinforcemnts on acoustic insulation property of composites[J]. Acta Materiae Compositae Sinica, 2008, 25(2): 68-72 (in Chinese). 傅雅琴, 朱春燕, 俞来明, 等. 增强材料的排列形式对复合材料隔声性能影响的实验研究[J]. 复合材料学报, 2008, 25(2): 68-72.
[19]  General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 21196—2007 Textiles—Determination of the abrasion resistance of fabrics by the Martindale method[S]. Beijing: Standards Press of China, 2007 (in Chinese). 中华人民共和国国家质量监督检验检疫总局. GB/T 21196—2007 纺织品 马丁代尔法织物耐磨性的测定[S]. 北京: 中国标准出版社, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133