|
- 2018
海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响
|
Abstract:
开展了30℃海水浸泡条件下玻璃纤维增强树脂基复合材料(GFRP)筋、碳纤维增强树脂基复合材料(CFRP)筋与珊瑚混凝土粘结性能的试验研究,分析了纤维增强树脂基复合材料(FRP)筋-珊瑚混凝土粘结滑移曲线特征、破坏形态及粘结强度变化。试验结果表明,海水浸泡后FRP筋力学性能和粘结性能均表现为不同程度的降低。随浸泡时间增加,GFRP筋表层树脂与纤维间的孔隙率明显增大,并逐渐出现脱粘现象,纤维本身遭受到侵蚀,而CFRP筋仅表面基体有少许损伤,其耐久性明显优于GFRP筋;FRP筋-珊瑚混凝土粘结强度呈现出先增加后减小的趋势,且后期下降速率逐渐变小,部分GFRP筋-珊瑚混凝土试件的破坏模式逐渐由筋被拔出转变为筋材断裂;增加保护层厚度能有效地减缓海水对GFRP筋的侵蚀,有利于保持GFRP筋-珊瑚混凝土间的粘结性能。 The experimental study on the bond properties of glass fiber reinforced polymer (GFRP) bars and coral concrete, carbon fiber reinforced plomer (CFRP) bars and coral concrete under sea water immersion at 30℃ was carried out. The characteristics of bond slip curves, failure modes and bond strength of fiber reinforced polymer(FRP) bars-coral concrete were analyzed. The results show that the mechanical properties and adhesive properties of FRP bars decrease in different degrees after immersion in seawater. With the increase of soaking time, the porosity between surface resin and fiber increases evidently, the phenomenon of debonding occurrs gradually, and the fiber itself is that of GFRP bars. The ultimate bond strength of FRP bars-coral concrete shows a trend to increase at first and then decreases and the later falling rate gradually becomes smaller. The failure modes of some GFRP bars-coral concrete specimens gradually change into bar fracture from pull-out. Increasing the cover thickness of coral concrete could reduce the erosion of the sea water to the FRP bars effectively, and helps to maintain the bond performance of the GFRP bars-coral concrete. 国家自然科学基金(51568013;51868014);广西高等学校高水平创新团队及卓越学着计划(2017)
[1] | lDAJAH S, ALAWSI G, RAHMAAN S A. Impact of sea and tap water exposure on the durability of GFRP laminates[J]. Materials & Design, 2009, 30(5):1835-1840. |
[2] | 邓宗才, 高伟男, 沈锋. 碱、盐环境下不同应力水平FRP筋抗压强度试验与理论研究[J]. 复合材料学报, 2017, 34(10):2220-2231. DENG Zongcai, GAO Weinan, SHEN Feng. Experimental and theoretical study on compressive strength of FRP rebars under different stress leves in alkali and salt solution[J]. Acta Materiae Compositae Sinica, 2017, 34(10):2220-2231(in Chinese). |
[3] | ALTALMAS A, REFAI A E, ABED F. Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions[J]. Construction and Building Materials, 2015, 81:162-171. |
[4] | 中华人民共和国建设部. 轻骨料混凝土技术规程:JGJ51-2002[S]. 北京:中国建筑工业出版社, 2002. Ministry of Construction of the People's Republic of China. Technical specification for lightweight aggregate concrete:JGJ51-2002[S]. Beijing:China Architecture & Building Press, 2002(in Chinese). |
[5] | 中华人民共和国建设部. 普通混凝土力学性能试验方法:GB/T 50081-2002[S]. 北京:中国建筑工业出版社, 2003. Ministry of Construction of the People's Republic of China. Standard for test method of mechanical properties on ordinary concrete:GB/T 50081-2002[S]. Beijing:China Architecture & Building Press, 2003(in Chinese). |
[6] | 杨苗苗. 模拟海水浸泡对玄武岩与玻璃纤维增强筋长期性能的影响[D]. 哈尔滨:哈尔滨工业大学, 2014. YANG Miaomiao. Effects of arificial seawater immersion on the long term properties of basalt and glass fibers reinforced bars[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese). |
[7] | 郭恒宁. FRP筋与混凝土粘结锚固性能的试验研究和理论分析[D]. 南京:东南大学, 2006. GUO Hengning. Experimental study and theoretical analysis on bond and anchorage properties of FRP tendons concrete[D]. Naijing:Southeast University, 2006(in Chinese). |
[8] | 李林. 珊瑚混凝土的基本特性研究[D]. 桂林:广西大学, 2012. LI Lin. Research on basic characteristics of coral concrete[D]. Guilin:Guangxi University, 2012(in Chinese). |
[9] | NANNI A. Fiber-reinforced-plastic (FRP) reinforcement for concrete structures:Properties and applications[J]. Developments in Civil Engineering, 1993, 16(1):65-66. |
[10] | 薛伟辰, 刘华杰, 王小辉. 新型FRP筋粘结性能研究[J]. 建筑结构学报, 2004(2):104-109, 123. XUE Weichen, LIU Huajie, WANG Xiaohui. Studies on bond properties of new-type FRP bars[J]. Jouranl of Building Structures, 2004(2):104-109, 123(in Chinese). |
[11] | 葛文杰, 张继文, 戴航, 等. FRP筋和钢筋混合配筋增强混凝土梁受弯性能[J]. 东南大学学报(自然科学版), 2012, 42(1):114-119. GE Wenjie, ZHANG Jiwen, DAI Hang, et al. Flexural behavior of concrete beam with hybrid reinforcement of FRP bars and steel bars[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(1):114-119(in Chinese). |
[12] | NAKADA M, MIYANO Y. Accelerated testing for long-term fatigue strength of various FRP laminates for marine use[J]. Composites Science and Technology, 2009, 69(6):805-813. |
[13] | 吴刚, 董志强, 徐博, 等. 海洋环境下BFRP筋与混凝土黏结性能及基本锚固长度计算方法研究[J]. 土木工程学报, 2016, 49(7):89-99. WU Gang, DONG Zhiqiang, XU Bo, et al. Bond performance and calculation method for the basic anchorage length of BFRP bar with concrete in marine enviroment[J]. China Civil Engineering Journal, 2016, 49(7):89-99(in Chinese). |
[14] | ROBERT M, BENMOKRANE B. Effect of aging on bond of GFRP bars embedded in concrete[J]. Cement and Concrete Composites, 2010, 32(6):461-467. |
[15] | 付凯, 薛伟辰. 人工海水环境下GFRP筋抗拉性能加速老化试验[J]. 建筑材料学报, 2014, 17(1):35-41. FU Kai, XUE Weichen. Accelerated aging tests for evaluations of tensile properties of GFRP bars under artificial seawater environment[J]. Journal of Building Materials, 2014, 17(1):35-41(in Chinese). |
[16] | 王磊, 毛亚东, 陈爽, 等. GFRP筋与珊瑚混凝土粘结性能的试验研究[J]. 建筑材料学报, 2018(2):1-7. WANG Lei, MAO Yadong, CHEN Shuang, et al. The experimental research on bond perfomance between GFRP bars and the coral concrete[J]. Journal of Building Materials, 2018(2):1-7(in Chinese). |
[17] | 金云东. BFRP筋-海水海砂混凝土梁短长期力学性能研究[D]. 南京:东南大学, 2016. JIN Yundong. Research on short-and long-term mechanical properties of BFRP bar reinforced marine sand concrete beams[D]. Nanjing:Southeast China Unversity, 2016(in Chinese). |
[18] | 吁新华, 董志强, 贺建平, 等. 海洋环境下CFRP筋与混凝土长期粘结性能研究[J]. 高科技纤维与应用, 2015, 40(6):19-23. YU Xinhua, DONG Zhiqiang, HE Jianping, et al. Research on the long-term bond performance of CFRP bars to concrete in ocean enviroment[J]. Hi-Tech Fiber and Application, 2015, 40(6):19-23(in Chinese). |
[19] | DA B, YU H, MA H, et al. Chloride diffusion study of coral concrete in a marine environment[J]. Construction and Building Materials, 2016, 123:47-58. |
[20] | 王磊, 吴翔, 曾榕, 等. CFRP筋与珊瑚混凝土的黏结性能试验研究[J]. 中国农村水利水电, 2016(7):127-131. WANG Lei, WU Xiang, ZHENG Rong, et al. The experimental research on bond performance between CFRP bars and the coral concrete[J]. China Rural Water and Hydropower, 2016(7):127-131(in Chinese). |
[21] | 王磊, 赵艳林, 吕海波. 珊瑚骨料混凝土的基础性能及研究应用前景[J]. 混凝土, 2012(2):99-100. WANG Lei, ZHAO Yanlin, LV Haibo. Prospect on the properties and application situation of coral aggregate concrete[J]. Concrete, 2012(2):99-100(in Chinese). |
[22] | SONG H W, LEE C H, ANN K Y. Factors influencing chloride transport in concrete structures exposed to marine environments[J]. Cement and Concrete Composites, 2008, 30(2):113-121. |
[23] | ANGST U, ELSENER B, LARSEN C K, et al. Critical chloride content in reinforced concretea review[J]. Cement and Concrete Research, 2009, 39(12):1122-1138. |
[24] | Canadian Standard Association. Design and construction of building components with fibre reinforced polymers:CSA S80602[S]. Toronto:Canadian Standards Association International, 2002. |
[25] | 张建. 海洋环境下CFRP及CFRP-混凝土界面性能的耐久性研究[D]. 大连:大连理工大学, 2013. ZHANG Jian. Durability study on CFRP and the interfacial performance between CFRP and concrete in sea enviroment[D]. Dalian:Dalian University of Technology, 2013(in Chinese). |
[26] | 吴芳. 玄武岩纤维筋与混凝土黏结性能试验研究[D]. 大连:大连理工大学, 2009. WU Fang. The experimental research on bond bahavior between BFRP rebars and the concrete[D]. Dalian:Dalian University of Technology, 2009(in Chinese). |