全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

湿热环境对7781/CYCOM 7701玻璃纤维/环氧复合材料典型力学性能的影响
Effect of hygro-thermal condition on typical mechanical property of 7781/CYCOM 7701 fiberglass/epoxy composite

DOI: 10.13801/j.cnki.fhclxb.20180319.001

Keywords: 复合材料,玻璃纤维,湿热环境,力学性能,环氧织物
composites
,fiberglass,hygro-thermal condition,mechanical property,epoxy fabric

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用7781/CYCOM 7701玻璃纤维/环氧织物预浸料和中温固化工艺制造了复合材料单向层压板试验件。将试验件分为3组,分别对应低温干态(CTD)、室温干态(RTD)和高温湿态(ETW)3种试验环境条件。在这3种试验环境条件下,分别测试了复合材料单向层压板的拉伸、压缩、剪切、孔挤压和拉脱等力学性能。并在试验中适当考虑了复合材料经向和纬向力学性能差异、是否含缺口和是否含冲击损伤等情况。根据试验结果,研究了湿热环境对7781/CYCOM 7701玻璃纤维/环氧复合材料单向层压板典型力学性能的影响。研究表明:以RTD条件为基准,各项强度性能在CTD条件下均上升,而在ETW条件下均下降。其中,在ETW条件下,拉伸强度下降18%~25%,压缩强度下降10%~40%,剪切强度下降30%~50%,孔挤压强度下降约20%,拉脱强度下降接近30%;拉伸和压缩弹性模量受温度和吸湿条件影响较小,均在10%左右或以内;而泊松比和剪切弹性模量则受温度和吸湿条件影响很大,两者在ETW条件下的性能比在RTD条件下的性能分别下降约30%和50%。 7781/CYCOM 7701 fiberglass/epoxy fabric prepreg was used to fabricate the composite lamina test specimens in medium temperature curing process. These test specimens were categorized into three groups, respectively corresponding to three types of environmental condition of testing:cold temperature dry(CTD), room temperature dry(RTD) and elevated temperature wet (ETW). Under the three types of test environmental condition, the composite lamina mechanical properties of tension, compression, shear, bearing and pull-through were tested. Meanwhile the mechanical properties difference between warp and fill direction of the composite, the existence of notch and impact damage, were properly considered in the test. Based on the test results, the effect of hygro-thermal condition on typical mechanical properties of 7781/CYCOM 7701 fiberglass/epoxy composite lamina was studied. Study indicates:Taking RTD condition as baseline, it rises in CTD condition but descends in ETW condition for each type of strength property. Of these, tensile strength descends 18% to 25%, compressive strength descends 10% to 40%, shear strength descends about 30% to 50%, bearing strength descends about 20%, and pull-through strength descends about 30% in ETW condition; Temperature and moisture absorption condition have a minor effect on tensile and compressive modulus, which is about 10% or below. But they have a major effect on Poisson's ratio and shear modulus. Taking RTD condition as baseline, it descends about 30% and 50% respectively for Poisson's ratio and shear modulus in ETW condition. 大型客机国家科技重大专项

References

[1]  ALAN B, STURT D, DONALD K. Composite materials for aircraft structures[M]. 2nd ed. Washington:America Institute of Aeronautics and Astronautics, Inc., 2004.
[2]  MOHAN P. A critical review:The modification, properties, and applications of epoxy resins[J]. Polymer-Plastics Technology and Engineering, 2013, 52(2):107-125.
[3]  CMH-17 Committee. Composite materials handbook:Vol 1-Guidelines for characterization of structural materials[M]. Detroit:SAE International, 2012:16, 24, 30.
[4]  YANG Q, LI X D, SHI L, et al. The thermal characteristics of epoxy resin:Design and predict by using molecular simulation method[J]. Polymer, 2013, 54(23):6447-6454.
[5]  EARL J S, SHENOI R A. Hygrothermal ageing effects on FRP laminate and structural foam materials[J]. Composites Part A:Applied Science & Manufacturing, 2004, 35(11):1237-1247.
[6]  方园, 梁亚杰, 刘伟庆, 等. 盐雾环境中玻璃纤维/不饱和聚酯复合材料腐蚀深度对弯曲性能的影响[J]. 复合材料学报, 2016, 33(6):1223-1233. FANG Yuan, LIANG Yajie, LIU Weiqing, et al. Effects of corrosion depths on flexural properties of glass fiber/unsaturated polyester composites in salt spray environment[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1223-1233(in Chinese).
[7]  蔡洪能, 宫野靖, 中田政之, 等. 玻璃纤维增强树脂基复合材料弯曲强度时间温度相关性[J]. 复合材料学报, 2005, 22(5):178-183. CAI Hongneng, MIYANO Yasushi, NAKADA Masayuki, et al. Time-temperature dependence of flexural strength of glass fiber reinforced plastics[J]. Acta Materiae Compositae Sinica, 2005, 22(5):178-183(in Chinese).
[8]  LIN Y C, CHEN X. Investigation of the effect of hygrothermal conditions on epoxy system by fractography and computer simulation[J]. Materials Letters, 2005, 59(29-30):3831-3836.
[9]  MOURAD A, ABDEL-MAGID M, EI-MAADDAWY T, et al. Effect of seawater and warm environment on glass/epoxy and glass/polyurethane composites[J]. Applied Composite Materials, 2010, 17:557-573.
[10]  潘文革, 矫桂琼, 杨杰. 二维机织树脂基复合材料湿热性能研究[J]. 航空材料学报, 2007, 27(1):37-40. PAN Wen'ge, JIAO Guiqiong, YANG jie. Experimental studies property of woven-fiber laminates composite on hygro-thermal environment[J]. Journal of Aeronautical Materials, 2007, 27(1):37-40(in Chinese).
[11]  董安琪, 段跃新, 肇研, 等. 湿热环境对PMI泡沫夹芯复合材料性能的影响[J]. 复合材料学报, 2012, 29(2):46-52. DONG Anqi, DUAN Yuexin, ZHAO Yan, et al. Effect of hygro-thermal condition on properties of polymethacrylimide(PMI) foam core and sandwich[J]. Acta Materiae Compo-sitae Sinica, 2012, 29(2):46-52(in Chinese).
[12]  ASTM Committee. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture:ASTM D6641/D6641M-14[S]. West Conshohocken:ASTM International, 2014.
[13]  ASTM Committee. Standard test method for open-hole compressive strength of polymer matrix composite laminates:ASTM D6484/D6484M-14[S]. West Conshohocken:ASTM International, 2014.
[14]  ASTM Committee. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates:ASTM D7137/D7137M-12[S]. West Conshohocken:ASTM International, 2012.
[15]  ASTM Committee. Standard test method for shear properties of composite materials by the V-notched beam method:ASTM D5379/D5379M-12[S]. West Conshohocken:ASTM International, 2012.
[16]  ASTM Committee. Standard test method for measuring the fastener pull-through resistance of a fiber-reinforced polymer matrix composite:ASTM D7332/D7332M-15A[S]. West Conshohocken:ASTM International, 2015.
[17]  CMH-17 Committee. Composite materials handbook:Vol 1-Guidelines for characterization of structural materials[M]. Detroit:SAE International, 2012, 2-95.
[18]  杨浩淼, 曾庆文, 张南夷, 等. 玻纤表面动态润湿行为[J]. 复合材料学报, 2014, 31(2), 317-322. YANG Haomiao, ZENG Qingwen, ZHANG Nanyi, et al. Dynamic wetting behavior of fiberglass surface[J]. Acta Materiae Compositae Sinica, 2014, 31(2), 317-322(in Chinese).
[19]  SUREEYATANAPASA P, YOUNG R J. SWNT composite coating as a strain sensor on glass fibers in model epoxy composites[J]. Composites Science and Technology, 2009, 69(10):1547-1552.
[20]  ALAN B, STUART D, DONALD K. 飞机结构复合材料技术[M]. 第2版. 柴亚南, 丁惠梁, 译. 北京:航空工业出版社, 2015:48-49, 202-203, 207. ALAN B, STURT D, DONALD K. Composite materials for aircraft structures[M]. 2nd ed. CHAI Ya'nan, DING Huiliang, Translated. Beijing:Aviation Industry Press, 2015:48-49, 202-203, 207(in Chinese).
[21]  孟姗姗, 王洋, 张博明. 静电植绒法处理多壁碳纳米管改性玻纤织物/环氧树脂复合材料的制备及力学性能[J]. 复合材料学报, 2015, 32(4):989-996. MENG Shanshan, WANG Yang, ZHANG Boming. Preparation and mechanical properties of MWCNTs modified glass fiber fabrics/epoxy composites disposed by electrostatic flocking method[J]. Acta Materiae Compositae Sinica, 2015, 32(4):989-996(in Chinese).
[22]  路鹏程, 毕亚芳, 王志平, 等. 电热作用对碳纤维树脂基复合材料力学性能的影响[J]. 复合材料学报, 2016, 33(10):2223-2229. LU Pengcheng, BI yafang, WANG Zhiping, et al. Effects of electric thermal effect on mechanical properties of carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2016, 33(10):2223-2229(in Chinese).
[23]  DWIGHT D W. Comprehensive composite materials:Vol 1-Glass fiber reinforcement[M]. Cambridge:Elsevier, 2000.
[24]  FENG P, WANG J, WANG Y, et al. Effects of corrosive environments on properties of pultruded GFRP plates[J]. Composites Part B:Engineering, 2014, 67:427-433.
[25]  ELLYIN F, MASER R. Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens[J]. Composites Science and Technology, 2004, 64(12):1863-1874.
[26]  高坤, 史汉桥, 孙宝岗, 等. 湿热老化对玻璃纤维/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2016, 33(6):1147-1152. GAO Kun, SHI Hanqiao, SUN Baogang, et al. Effect of hygro-thermal aging on properties of glass fiber/epoxy com-posite[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1147-1152(in Chinese).
[27]  TOMBLIN, JOHN S, NG YEOW C, et al. Material qualification and equivalency for polymer matrix composite material systems:DOT/FAA/AR-00/47[R]. Washington:FAA, 2001.
[28]  ASTM Committee. Standard test method for tensile properties of polymer matrix composite materials:ASTM D3039/D3039M-14[S]. West Conshohocken:ASTM International, 2014.
[29]  ASTM Committee. Standard test method for open-hole tensile strength of polymer matrix composite laminates:ASTM D5766/D5766M-11[S]. West Conshohocken:ASTM International, 2011.
[30]  ASTM Committee. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event:ASTM D7136/D7136M-15[S]. West Conshohocken:ASTM International, 2015.
[31]  ASTM Committee. Standard test method for in-plane shear strength of reinforced plastics:ASTM D3846-08[S]. West Conshohocken:ASTM International, 2015.
[32]  ASTM Committee. Standard test method for bearing response of polymer matrix composite laminates:ASTM D5961/D5961M-13[S]. West Conshohocken:ASTM International, 2013.
[33]  LEE J, DRZAL T. Surface characterization and adhesion of carbon fibers to epoxy and polycarbonate[J]. Adhesion & Adhesives, 2005, 25(5):389-394.
[34]  VISCO A M, CAMPO N, CIANCIAFARA P. Comparison of seawater absorption properties of the thermoset resins based composites[J]. Composites Part A:Applied Science and Manufacturing, 2011, 42(2):123-130.
[35]  CMH-17 Committee. Composite materials handbook:Vol 1-Guidelines for characterization of structural materials[M]. Detroit:SAE International, 2012:6-122.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133