全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Fe3O4-碳纳米管/聚偏氟乙烯复合材料的制备与性能
Preparation and properties of Fe3O4-carbon nanotubes/polyvinylidene fluoride composite

DOI: 10.13801/j.cnki.fhclxb.20180705.004

Keywords: 聚偏氟乙烯,Fe3O4-碳纳米管,晶体结构,介电性能,击穿场强
polyvinylidene fluoride
,Fe3O4-CNTs,crystal structure,dielectric properties,breakdown field strength

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过在碳纳米管(CNTs)表面进行功能化修饰,改善CNTs与聚偏氟乙烯(Polyvinylidene Fluoride,PVDF)的分散性及界面结合程度,从而获得优异的力学性能和电学性能,提高其在传感器、致动器和储能方面的应用性能。采用原位水热合成法,在CNTs表面修饰磁性Fe3O4纳米粒子,然后将Fe3O4-CNTs加入PVDF中,采用流延工艺制备出Fe3O4-CNTs/PVDF复合薄膜。采用SEM、TEM、XRD和DSC研究了Fe3O4-CNTs/PVDF复合薄膜的结构和结晶行为,采用动态力学分析(DMA)、宽带介电谱测试系统和交流击穿场强测试系统研究了Fe3O4-CNTs对复合材料力学性能、介电性能及击穿场强的影响。结果表明:Fe3O4-CNTs的引入促使PVDF形成了β晶相,同时抑制了Fe3O4-CNTs/PVDF复合材料结晶度的下降;提高了弹性模量,抑制了阻尼特性下降;提高了介电常数和击穿场强,抑制了介电损耗升高。 Carbon nanotubes(CNTs) were modified by Fe3O4, the dispersibility of CNTs in polyvinylidene fluoride (PVDF) and interfacial adhesion were improved so as to achieve high mechanical properties and electrical properties, better application for sensor, actuator and energy storage with functional performance. Fe3O4-CNTs were prepared by in situ hydrothermal synthesis method. Fe3O4-CNTs/PVDF composites were prepared by the casting process. The structure and crystallization behavior of Fe3O4-CNTs/PVDF composite films were studied by SEM, TEM, XRD and DSC. The mechanical properties, the dielectric properties and breakdown field strength of Fe3O4-CNTs/PVDF composite were studied by DMA and the broadband dielectric spectrometer. The results show that, due to the adding of Fe3O4-CNTs, the crystallinity of the composite is improved and the PVDF β crystal phase is observed for adding Fe3O4-CNTs. The dielectric constant is increased, the increase of dielectric loss is inhibited. The breakdown field strength is increased visibly. 国家自然科学基金(51305437);高等学校博士学科点专项科研基金(20136118120003)

References

[1]  DANG Z M, YUAN J K, YAO S H, et al. Flexible nanodielectric materials with high permittivity for power energy storage[J]. Advanced Materials, 2013, 25(44):6334-6365.
[2]  TING Y, SUPRAPTO, NUGRAHA A, et al. Design and characterization of one-layer PVDF thin film for a 3D force sensor[J]. Sensors and Actuators A:Physical, 2016, 250:129-137.
[3]  XIN Y, QI X H, TIAN H Y et al. Full-fiber piezoelectric sensor by straight PVDF/nanoclay nanofibers[J]. Materials Letters, 2016, 164:136-139.
[4]  GU X G, XIA X G, ZHANG N, et al. Electromechanical actuation of CNT/PVDF composite films based on a bridge configuration[J]. Chinese Physics B, 2017, 26(7):413-419.
[5]  CHANG C, TRAN V H, WANG J B, et al. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency[J]. Nano Letters, 2010, 10(2):726-731.
[6]  DAS S, BISWAL A K, PARIDA K, et al. Electrical and mechanical behavior of PMN-PT/CNT based polymer composite film for energy harvesting[J]. Applied Surface Science, 2018, 428:356-363.
[7]  CHIU F C, CHUANG Y C, LIAO S J, et al. Comparison of PVDF/PVAc/GNP and PVDF/PVAc/CNT ternary nanocomposites:Enhanced thermal/electrical properties and rigidity[J]. Polymer Testing, 2018, 65:197-205.
[8]  CHIU F C, YEH S C. Comparison of PVDF/MWNT, PMMA/MWNT and PVDF/PMMA/MWNT composites:MWNT dispersibility and thermal and rheological properties[J]. Polymer Testing, 2015, 45:114-123.
[9]  CAO M S, WANG X X, CAO W Q, et al. Ultrathin graphene:Electrical properties and highly efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2015, 3(26):6589-6599.
[10]  YU H, HUANG T, LU M, et al. Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity[J]. Nanotechnology, 2013, 24(40):405401.
[11]  谢北萍, 晏石林, 何旭, 等. 碳纳米管改性泡沫镍/环氧树脂复合材料阻尼性能[J]. 复合材料学报, 2017, 34(6):1325-1333. XIE B P, YAN S L, HE X, et al. Damping property of Ni foam/epoxy resin composites modified with carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2017, 34(6):1325-1333(in Chinese).
[12]  LU M M, CAO M S, CHEN Y H, et al. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes:A smart absorber prototype varying temperature to tune intensities[J]. ACS Applied Materials & Interfaces, 2015, 7(34):19408-19415.
[13]  WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65(12):124-139.
[14]  CAO M S, YANG J, SONG W L, et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Applied Materials & Interfaces, 2012, 4(12):6948-6955.
[15]  DANG Z M, YUAN J K, ZHA J W, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites[J]. Progress in Material Science, 2012, 57(4):660-723.
[16]  FERRREIRA A, ROCHA J G, ANSON C A, et al. Electromechanical performance of poly(vinylidene fluoride)/carbon nanotube composites for strain sensor applications[J]. Sensors and Actuators A:Physical, 2012, 178(5):10-16.
[17]  LIU Z H, PAN C T, SU C Y, et al. A flexible sensing device based on a PVDF/MWCNT composite nanofiber array with an interdigital electrode[J]. Sensors and Actuators A:Physical, 2014, 211(5):78-88.
[18]  王金龙, 王文一, 史菁元, 等. 多壁碳纳米管/聚偏氟乙烯高介电常数复合材料的制备与性能[J]. 复合材料学报, 2015, 32(5):1355-1360. WANG J L, WANG W Y, SHI J Y, et al. Preparation and properties of multi-walled carbon nanotubes/poly (vinylidene fluoride) high dielectric constant composites[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1355-1360(in Chinese).
[19]  ZHANG Q M, LI H, POH M, et al. An all-organic compo-site actuator material with a high dielectric constant[J]. Nature, 2002, 419(6904):284-287.
[20]  WANG L, DANG Z M. Carbon nanotube composites with high dielectric constant at low percolation threshold[J]. Applied Physics Letters, 2005, 87(4):042903.
[21]  YANG C, LIN Y, NAN C W. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density[J]. Carbon, 2009, 47(4):1096-1101.
[22]  ZHAO X W, WANG H T, FU Z, et al. Enhanced interfacial adhesion by reactive carbon nanotubes:Newroute to high-performance immiscible polymer blendnanocomposites with simultaneously enhanced toughness, tensile strength, and electrical conductivity[J]. ACS Applied Materials & Interfaces 2018, 10(10):8411-8416.
[23]  FAN B H, LU X X, DANG Z M, et al. Improved dispersion of carbon nanotubes in poly(vinylidene fluoride) composites by hybrids with core-shell structure[J]. Journal of Applied Polymer Science, 2018, 135(3):45693.
[24]  CAO M S, HAN C, WANG X X, et al. Graphene nanohybrids:excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves[J]. Journal of Materials Chemistry C, 2018, 6(17):4586-4602.
[25]  YU S S, ZHENG W T, YU W X. Formation mechanism of beta-phase in PVDF/CNT composite prepared by the sonication method[J]. Macromolecules, 2009, 42(22):8870-8874.
[26]  CHEN Y H, HANG Z H, LU M M, et al. 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity[J]. Journal of Materials Chemistry A, 2015, 3(24):12621-12625.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133