全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

La/Hβ-Al2O3复合材料改善轻汽油醚化活性
La/Hβ-Al2O3 composite materials improve light gasoline etherification activity

DOI: 10.13801/j.cnki.fhclxb.20180316.005

Keywords: 轻汽油,醚化,La3+交换,复合材料,清洁生产
light gasoline
,etherification,lanthanum ion-exchange,composite materials,cleaner production

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用La3+交换法制备La/Hβ-Al2O3复合材料,用于改善轻汽油的低温醚化活性。借助XRD、XRF、BET、FTIR、NH3-TPD、PyIR、FETEM-EDX等分析手段对复合材料的理化性能进行表征,其中XRD、XRF、BET和FTIR的表征结果显示,少量La3+的引入对复合材料的晶相结构和骨架结构无明显破坏作用,而适度的La3+交换反而具有扩孔效果;NH3-TPD和PyIR的分析结果表明,经La3+交换后复合材料的酸量和酸强度有所减弱,但引入的La3+可以形成新的B酸中心,使中强酸比例和B酸中心数目得到提高;FETEM-EDX分析结果证实镧物种主要存在于复合材料中的Hβ分子筛上。对该复合材料的低温醚化活性评价结果显示,La3+交换法可以改善复合催化剂的轻汽油醚化活性,催化剂0.1 La/Hβ-Al2O3表现出最佳活性,产物甲基叔戊基醚收率最高可达58.13%。对该催化剂进行300 h寿命考察,证实其具有较好稳定性及可再生性。 The La/Hβ-Al2O3 composite materials were prepared by method of lanthanum ion-exchange and used to improve the low-temperature etherification activity of light gasoline. The physical chemical properties of composite materials were characterized by a series of analytical methods, such as XRD, XRF, BET, FTIR, NH3-TPD, PyIR and FETEM-EDX. The results of XRD, XRF, BET and FTIR show that introduction of a small amount of lanthanum ions has no obvious effect on the crystalline phase and skeleton structure of the composite materials, on the contrary, moderate lanthanum ion exchange has the effect of pore-enlarging. The analysis results of NH3-TPD and PyIR show that acid content and acid strength of the composite materials have been weakened, but the introduction of lanthanum ions can form a new Br?nsted acid site, which increases the ratio of medium strong acid and the amount of Br?nsted acid sites. The results of FETEM-EDX analysis confirm that the lanthanum species are mainly present in the Hβ molecular sieve of composite materials. The evaluation results of etherification activity of this composite material show that the method of lanthanum ion-exchange can improve the light gasoline etherification activity of composite catalyst, in which the sample 0.1 La/Hβ-Al2O3 shows the best activity, and the yield of methyl tertiary amyl ether is up to 58.13%. The 300 h life test results show that it has good stability and reproducibility. 广西自然科学基金(2017GXNSFBA198145);广西高校北部湾石油天然气资源有效利用重点实验室开放课题基金(2017KLOG04);钦州学院引进人才科研启动基金(2017KYQD231)

References

[1]  谢英娜, 安胜利, 袁春华. La3+-Pr3+共掺杂纳米TiO2粉体的光催化性能[J]. 复合材料学报, 2012, 29(6):97-101.XIE Yingna, AN Shengli, YUAN Chunhua. Influence of La3+ and Pr3+ co-doped on photocatalytic properties of TiO2 nanoparticles[J]. Acta Materiae Compositae Sinica, 2012, 29(6):97-101(in Chinese).
[2]  何文, 张旭东, 许静, 等. CeO2/TiO2复合体系的有序介孔结构表征[J]. 复合材料学报, 2005, 22(3):75-79.HE Wen, ZHANG Xudong, XU Jing, et al. Characterization of the ordered mesoporous structure of CeO2/TiO2 compo-sites[J]. Acta Materiae Compositae Sinica, 2005, 22(3):75-79(in Chinese).
[3]  THAKUR R, GUPTA R K, BARMAN S. A comparative study of catalytic performance of rare earth metal-modified beta zeolites for synthesis of cymene[J]. Chemical Papers, 2016, 71(1):137-148.
[4]  柏世梅, 尧军平, 刘辉, 等. 稀土Er和Ce复合改性对过共晶Mg-Si合金组织与性能的影响[J]. 复合材料学报, 2017, 34(6):1300-1307.BAI Shimei, YAO Junping, LIU Hui, et al. Effect of Er and Ce on modification of primary Mg2Si phase in hypereutectic Mg-Si alloys[J]. Acta Physico-Chimica Sinica, 2017, 34(6):1300-1307(in Chinese).
[5]  杨伯伦, 路士庆, 吴江, 等. 镧改性β分子筛上的异丁烯水合醚化复合反应[J]. 催化学报, 2007, 28(1):73-79.YANG Bolun, LU Shiqing, WU Jiang, et al. Complex reactions of hydration and etherification of isobutene over La-modified β molecular sieve[J]. Chinese Journal of Catalysis, 2007, 28(1):73-79(in Chinese)
[6]  樊合利, 赵欣, 王丹红, 等. 镧改性β分子筛的制备及催化合成ETBE的活性研究[J]. 分子催化, 2010, 24(5):428-434.FAN Heli, ZHAO Xin, WANG Danhong, et al. Preparation of La/β and the activity in synthesis of ETBE[J]. Journal of Molecular Catalysis, 2010, 24(5):428-434(in Chinese).
[7]  GAO Jing, HOU Zhaoyin, GUO Jianzhong, et al. Catalytic conversion of methane and CO2 to synthesis gas over a La2O3-modified SiO2 supported Ni catalyst in fluidized-bed reactor[J]. Catalysis Today, 2008, 131(1-4):278-284.
[8]  MAHALAKSHMI M, PRIYA S V, ARABINDOO B, et al. Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hbeta zeolite-supported TiO2[J]. Journal of Hazardous Materials, 2009, 161(1):336-343.
[9]  HAJBABAEI M, KARAVALAKIS G, MILLER J W, et al. Impact of olefin content on criteria and toxic emissions from modern gasoline vehicles[J]. Fuel, 2013, 107:671-679.
[10]  北京市质量技术监督局. 车用汽油:DB 11/238-2016[S]. 北京:北京市地方标准局, 2016.Beijing Quality and Technical Supervision Bureau. Gasoline for motor vehicles:DB11/238-2016[S]. Beijing:Beijing Municipal Bureau of Local Standards, 2016(in Chinese).
[11]  颜曦明, 柯明, 宋昭峥, 等. 柠檬酸改善Hβ沸石低温醚化活性研究[J]. 中国石油大学学报(自然科学版), 2016, 40(4):154-160.YAN Ximing, KE Ming, SONG Zhaozheng, et al. Improvement of the low-temperature etherification activity of zeolite by citric acid treatment[J]. Journal of China University of Petroleum(Edition of Natural Science), 2016, 40(4):154-160(in Chinese).
[12]  ZHAO Weiqin, YI Chunhai, YANG Bolun, et al. Etherification of glycerol and isobutylene catalyzed over rare earth modified Hβ-zeolite[J]. Fuel Processing Technology, 2013, 112(112):70-75.
[13]  WANG Yinhui, ZHENG Rong, QIN Yanhong, et al. The impact of fuel compositions on the particulate emissions of direct injection gasoline engine[J]. Fuel, 2016, 166:543-552.
[14]  NICHOLAS C P, LAIPERT L, PRABHAKAR S. Oligomerization of light olefins to gasoline:An advanced NMR characterization of liquid products[J]. Industrial & Engineering Chemistry Research, 2016, 55(34):9140-9146.
[15]  KIATKITTIPONG W, YOOTHONGKHAM K, CHAISUK C, et al. Self-etherification process for cleaner fuel production[J]. Catalysis Letters, 2009, 128(1-2):154-163.
[16]  GONZáLEZ M D, CESTEROS Y, SALAGRE P. Establishing the role of Br?nsted acidity and porosity for the catalytic etherification of glycerol with tert-butanol by modifying zeolites[J]. Applied Catalysis A:General, 2013, 450(450):178-188.
[17]  ZHAN Wangcheng, GUO Yun, GONG Xueqing, et al. Current status and perspectives of rare earth catalytic materials and catalysis[J]. Chinese Journal of Catalysis, 2014, 35(8):1238-1250.
[18]  李斌, 李士杰, 李能, 等. FCC催化剂中REHY分子筛的结构与酸性[J]. 催化学报, 2005, 26(4):301-306.LI Bin, LI Shijie, LI Neng, et al. Structure and acidity of REHY zeolite in FCC catalyst[J]. Chinese Journal of Catalysis, 2005, 26(4):301-306(in Chinese).
[19]  张丹华, 王璐, 郭洪波, 等. 多元稀土氧化物掺杂二氧化锆基陶瓷材料的热物理性能[J]. 复合材料学报, 2011, 28(2):179-184.ZHANG Danhua, WANG Lu, GUO Hongbo, et al. Thermophysical properties of multiple rare earth oxide co-doped zirconia-based ceramic materials[J]. Acta Materiae Compo-sitae Sinica, 2011, 28(2):179-184(in Chinese).
[20]  于善青, 田辉平, 朱玉霞, 等. 稀土离子调变Y型分子筛结构稳定性和酸性的机制[J]. 物理化学学报, 2011, 27(11):2528-2534.YU Shanqing, TIAN Huiping, ZHU Yuxia, et al. Mechanism of rare earth cations on the stability and acidity of Y zeolites[J]. Acta Physico-Chimica Sinica, 2011, 27(11):2528-2534(in Chinese).
[21]  FEI Jinhua, HOU Zhaoyin, ZHU Bing, et al. Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu-Mn-Zn catalysts[J]. Applied Catalysis A:General, 2006, 304(1):49-54.
[22]  OTOMO R, YOKOI T, KONDO J N. Dealuminated Beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural[J]. Applied Catalysis A:General, 2014, 470(2):318-326.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133