|
- 2017
考虑时间和温度影响的复合材料开孔层板压缩失效分析
|
Abstract:
鉴于复合材料性能的时间-温度相关性,对固化后的树脂基体(5228A)进行了动力学分析(Dynamic Mechanical Analysis,DMA),得到了试验窗口中不同温度下的储能模量曲线片段,利用封闭平移(Closed Form Shifting,CFS)方法对其进行扩展,建立了主曲线并得到了曲线片段对应的平移因子。根据加速试验方法(Accelerated Testing Methodology,ATM),分别以两种铺层的准各向同性开孔层板(CCF300/5228A)为研究对象,建立了匀应变率(Constant Strain Rate,CSR)压缩强度主曲线。借助微距拍摄和超声波C扫描,对其渐进损伤过程和不同温度下的破坏形貌进行了观测。结果表明:即使温度低于玻璃态转变温度,树脂基体动态力学性能也会随时间的增加而降低;单层较厚的开孔层板压缩强度对时间和温度更加敏感,而单层较薄的开孔层板则具有更好的损伤容限性能;温度升高、加载速率降低时,开孔层板压缩最终破坏主导因素从分层损伤趋于纤维屈曲。 Taking time-temperature dependent properties of composites into consideration, storage modulus segments of cured 5228A resin was obtained within a certain experimental window by dynamic mechanical analysis (DMA) under different temperatures. Master curve was constructed by closed form shifting (CFS), which corresponding shift factors resulted from. Constant strain rate (CSR) compression master curves were established based on accelerated testing methodology (ATM), studying quasi-isotropic open-hole CCF300/5228A laminates of two kinds of layup. By means of macro photography and C-scan, the damage processes and failure modes were investigated under different temperatures. The results show that dynamic mechanical properties of resin decrease with the increasing time even though with temperature range below the glass transition temperature; strength of thicker-ply laminates is more sensitive to time and temperature changes, while thinner-ply ones possess better damage tolerance property; the dominant factor of final failure tends to be micro-bulking of fiber instead of delamination as temperature rises and loading rate decreases. 国家重点基础研究发展计划(973计划)资助项目(2010CB631103)
[1] | LEE J, SOUTIS C. Thickness effect on the compressive strength of T800/924C carbon fibre-epoxy laminates[J]. Composites Part A: Applied Science & Manufacturing, 2005, 36(2): 213-227. |
[2] | SIHN S, RAN Y K, KAWABE K, et al. Experimental studies of thin-ply laminated composites[J]. Composites Science & Technology, 2007, 67(6): 996-1008. |
[3] | MIYANO Y, MCMURRAY M K, ENYAMA J, et al. Loading rate and temperature dependence on flexural fatigue behavior of a satin woven CFRP laminate[J]. Journal of Composite Materials, 1994, 28(13): 1250-1260. |
[4] | MIYANO Y, NAKADA M, CAI H. Formulation of long-term creep and fatigue strengths of polymer composites based on accelerated testing methodology[J]. Journal of Composite Materials, 2008, 42(18): 1897-1919. |
[5] | Standard test method for glass transition temperature (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA): ASTM D7028—07[S]. West Conshohocken: ASTM International, 2007. |
[6] | Standard test method for open-hole compressive strength of polymer matrix composite laminates: ASTM D6484/D6484 M—09[S]. West Conshohocken: ASTM International, 2009. |
[7] | MIYANO Y, KANEMITSU M, KUNIO T, et al. Role of matrix resin on fracture strengths of unidirectional CFRP[J]. Journal of Composite Materials, 1986, 20(6): 520-538. |
[8] | MIYANO Y, NAKADA M, MCMURRAY M K, et al. Prediction of flexural fatigue strengths of CRFP composites under arbitrary frequency, stress ratio and temperature[J]. Journal of Composite Materials, 1997, 31(6): 619-638. |
[9] | CAI H, MIYANO Y, NAKADA M, et al. Long-term fatigue strength prediction of CFRP structure based on micromechanics of failure[J]. Journal of Composite Materials, 2008, 42(8): 825-844. |
[10] | 蔡洪能, 宫野靖, 中田政之, 等. 玻璃纤维增强树脂基复合材料弯曲强度时间温度相关性[J]. 复合材料学报, 2005, 22(5): 178-183. CAI H N, YASUSHI M, MASAYUKI N, et al. Time-temperature dependence of flexural strength of glass fiber reinforced plastics[J]. Acta Materiae Compositae Sinica, 2005, 22(5): 178-183 (in Chinese). |
[11] | GERGESOVA M, ZUPAN A?G I A?G B, SAPRUNOV I, et al. The closed form t-T-P shifting (CFS) algorithm[J]. Journal of Rheology, 2011, 55(1): 1-16. |
[12] | GERGESOVA M, SAPRUNOV I, EMRI I. Closed-form solution for horizontal and vertical shiftings of viscoelastic material functions in frequency domain[J]. Rheologica Acta, 2016, 55(5): 351-364. |
[13] | OSELI A, AULOVA A, GERGESOVA M, et al. Time-temperature superposition in linear and non-linear domain[J]. Materials Today Proceedings, 2016, 3(4): 1118-1123. |
[14] | LEE J, SOUTIS C. Measuring the notched compressive strength of composite laminates: Specimen size effects[J]. Composites Science & Technology, 2008, 68(12): 2359-2366. |
[15] | 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10 (in Chinese). |