|
- 2017
TiO2-Fe3O4/MIL-101(Cr)磁性复合光催化材料的制备及其光催化性能
|
Abstract:
采用原位水热法合成了TiO2-Fe3O4/MIL-101(Cr)磁性复合光催化材料,利用XRD、SEM、UV-Vis DRS、BET和磁学测量系统对复合光催化材料的结构和性能进行了表征,并以亚甲基蓝(MB)为模拟污染物,研究了该复合光催化材料的可见光催化活性,并考察了光催化材料的稳定性。结果表明:巯基官能化的Fe3O4和TiO2与MIL-101(Cr)结合成功,复合后的TiO2-Fe3O4/MIL-101(Cr)光催化材料的可见光响应范围得到明显拓宽;当TiO2的添加量为400 mg时所制得的磁性复合光催化材料具有相对较好的光催化降解效果,经过120 min光照后,对MB的去除率高达80%;该磁性复合光催化材料具有良好的稳定性和磁分离性能。 The magnetic TiO2-Fe3O4/MIL(Material Institute Lavoisier)-101(Cr) composites were synthesized via in situ hydrothermal method. The structure and performance of composites were characterized by XRD, SEM, UV-Vis DRS, BET and superconducting magnet system. The photocatalytic activity of TiO2-Fe3O4/MIL-101(Cr) composites were investigated by photocatalytic degradation of MB solution, and the stability of TiO2-Fe3O4/MIL-101(Cr) composites was also studied. The results show that the thiohydroxy-modified-Fe3O4 and thiohydroxy-modified-TiO2, can be successfully combined with MIL-101(Cr), and a notable absorption extension in the visible-light region can be observed for the TiO2-Fe3O4/MIL-101(Cr) composites. The TiO2-Fe3O4/MIL-101(Cr)(400) composite exhibits the highest photocatalytic activity, while the corresponding photodegradation efficiency for MB is 80% after 120 min irradiation. The TiO2-Fe3O4/MIL-101(Cr) composites also have a good stability and can be easily separated from solution by an external magnet. 国家自然科学基金(21407026);福建省杰出青年科学基金(2014J06005);福州大学能源与环境光催化国家重点实验室自主课题基金(2014B02)
[1] | 李志利, 盖利刚, 张伟. 水热法制备八面体Fe3O4亚微米晶及其影响因素[J]. 材料导报, 2010, 24(S1): 33-37. LI Z L, GAI L G, ZHANG W. Hydrothermal synthesis of octahedral Fe3O4 submicrocrystals and its effect factors[J]. Materials Review, 2010, 24(S1): 33-37 (in Chinese). |
[2] | ZHANG H Z, BANFIELD J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2[J]. The Journal of Physical Chemistry B, 2000, 104(15): 3481-3487. |
[3] | 景红霞, 李巧玲, 叶云, 等. 纳米Fe3O4及Fe3O4-SrFe12O19吸波复合材料的制备及性能[J]. 复合材料学报, 2013, 30(1): 130-134. JING H X, LI Q L, YE Y, et al. Preparation and properties of nano-Fe3O4 and Fe3O4-SrFe12O19 wave-absorbing composites[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 130-134 (in Chinese). |
[4] | 肖俊霞. MIL-101(Cr3+)可见光催化氧化降解甲基橙的研究[J]. 环境科学与技术, 2014, 37(11): 156-159. XIAO J X. Visible-light photocatalytic degradation of methyl orange with MIL-101(Cr3+)[J]. Environmental Science & Technology, 2014, 37(11): 156-159 (in Chinese). |
[5] | SANDERSON K. Materials chemistry: Space invaders[J]. Nature, 2007, 448(7155): 746-748. |
[6] | RIJNAARTS T, MEJIA-ARIZA R, HUSKENS J, et al. Metal-organic frameworks (MOFs) as multivalent materials: Size control and surface functionalization by monovalent capping ligands[J]. Chemistry-A European Journal, 2015, 21(29): 10296-10301. |
[7] | KHAN N K, JHUNG S H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction[J]. Coordination Chemistry Reviews, 2015, 285: 11-23. |
[8] | DIAS E M, PETIT C. Towards the use of metal-organic frameworks for water reuse: A review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field[J]. Journal of Materials Chemistry A, 2015, 3(45): 22484-22506. |
[9] | FéREY G, DRAZNIEKS C M, SERRE C, et al. A chromium terephthalatebased solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
[10] | BURTCH N C, JASUJA H, WALTON K S. Water stability and adsorption in metal-organic frameworks[J]. Chemical Reviews, 2014, 114(20): 10575-10612. |
[11] | LENG F, WANG W, ZHAO X J, et al. Adsorption interaction between a metal-organic framework of chromium-benzenedicarboxylates and uranine in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441: 164-169. |
[12] | BHATTACHARJEE S, CHEN C, AHN W S. Chromium terephthalate metal-organic framework MIL-101: Synthesis, functionalization, and applications for adsorption and catalysis[J]. The Royal Social of Chemistry, 2014, 4(94): 52500-52525. |
[13] | ASAHI R, MORIWAKI T, AOKI K, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. |
[14] | 付乌有, 杨海滨, 刘冰冰, 等.锐钛矿型TiO2/MnFe2O4核壳结构复合纳米颗粒的制备及其光催化特性[J]. 复合材料学报, 2007, 24(3): 136-140. FU W Y, YANG H B, LIU B B, et al. Preparation and photocatalytic property of anatase TiO2/MnFe2O4 core-shell structure nanoparticles[J]. Acta Materiae Compositae Sinica, 2007, 24(3): 136-140 (in Chinese). |
[15] | SUN Z G, LI G, LIU L, et al. Au nanoparticles supported on Cr-based metal-organic framework as bimetallic catalyst for selective oxidation of cyclohexane to cyclohexanone and cyclohexanol[J]. Catalysis Communications, 2012, 27(5): 200-205. |
[16] | WU F, QIU L G, KE F, et al. Copper nanoparticles embedded in metal-organic framework MIL-101(Cr) as a high performance catalyst for reduction of aromatic nitro compounds[J]. Inorganic Chemistry Communications, 2013, 32(14): 5-8. |
[17] | 陈琪, 费霞, 何琴琴, 等. MIL-101/P25复合材料的制备及光催化性能[J]. 无机化学学报, 2014, 30(5): 993-1000. CHEN Q, FEI X, HE Q Q, et al. Preparation and photocatalytic properties of MIL-101/P25 composites[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(5): 993-1000 (in Chinese). |
[18] | HABILA M A, ALOTHMAN Z A, EL-TONI A M, et al. Synthesis and application of Fe3O4@SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis[J]. Talanta, 2014, 154: 539-547. |
[19] | DAVIS M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417: 813-821. |