|
- 2017
复合材料圆柱壳的轴压屈曲失效试验
|
Abstract:
为了研究高径比大于1的复合材料圆柱壳的轴压屈曲性能及其失效模式,对2组单向纤维圆柱壳和3组外侧环裹环向纤维圆柱壳进行了轴压试验,观察了试件的受力过程和破坏形态,获得了荷载-位移曲线和荷载-应变曲线,利用有限元模型分析了单向纤维圆柱壳两种屈曲形式的破坏机制,对比分析了两种铺层试件的轴压性能。结果表明:单向纤维复合材料圆柱壳出现先纵向劈裂后板壳屈曲和先柱壳屈曲后纵向劈裂的两种破坏模式;外侧环向纤维可改善圆柱壳的轴压性能,屈曲发展有一定的阶段性并表现出延性特征,破坏形式和承载力均较为稳定。 In order to study the buckling behavior and failure model of composite cylindrical shell with aspect ratio greater than 1 subject to axial compression, the axial compression tests for two unidirectional fiber composite cylindrical shells and three composite cylindrical shells wrapped hoop fiber were conducted, respectively. The failure model, load-displacement relationship and load-strain relationship were documented during the loading process. Then, the failure mechanisms of two unidirectional fiber composite cylindrical shells were numerical analyzed and the axial compression behaviors of those two shells were comparative analyzed. The results show that there are two failure models for unidirectional fiber composite cylindrical shell under axial compression: the longitudinal splitting of cylindrical shell followed by the buckling of each plates, or the buckling of the cylindrical shell followed by the longitudinal splitting; the outer hoop fibers can improve the behavior of cylindrical shells under axial compression, and the buckling process has certain stages showing that ductile characteristics and stable carrying capacity and failure modes. 国家自然科学基金(51408606);国家科技支撑计划(2014BAB15B01-05)
[1] | MEYER-PIENING H R, FARSHAD M, GEIER B, et al. Buckling loads of CFRP composite cylinders under combined axial and torsion loading-experiments and computations[J]. Composite Structures, 2001, 53(4): 427-435. |
[2] | DEGENHARDT R, KLING A, BETHGE A, et al. Investigations on imperfection sensitivity and deduction of improved knock-down factors for unstiffened CFRP cylindrical shells[J]. Composite Structures, 2010, 92(8): 1939-1946. |
[3] | BISAGNI C, CORDISCO P. An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading[J]. Composite Structures, 2003, 60(4): 391-402. |
[4] | BISAGNI C. Experimental buckling of thin composite cylinders in compression[J]. AIAA Journal, 1999, 37(2): 276-278. |
[5] | WEAVER P M, DRIESEN J R, ROBERTS P. Anisotropic effects in the compression buckling of laminated composite cylindrical shells[J]. Composites Science and Technology, 2002, 62(1): 91-105. |
[6] | BISAGNI C. Composite cylindrical shells under static and dynamic axial loading: An experimental campaign[J]. Progress in Aerospace Sciences, 2015, 78: 107-115. |
[7] | ROUHI M, GHAYOOR H, HOA S V, et al. Stiffness tailoring of elliptical composite cylinders for axial buckling performance[J]. Composite Structures, 2016, 150: 115-123. |
[8] | 肖汉林. 复合材料圆柱壳结构动响应及屈曲[D]. 武汉:华中科技大学, 2006. XIAO H L. Dynamic response and buckling of composite cylindrical shells[D]. Wuhan:Huazhong University of Science & Technology, 2006 (in Chinese). |
[9] | 何景轩. 固体发动机复合材料裙轴压屈曲载荷计算[J]. 固体火箭技术, 1998, 21(2): 62-65. HE J X. Calculation of composite skirt axial compress buckling of SRM[J]. Journal of Solid Rocket Technology, 1998, 21(2): 62-65 (in Chinese). |
[10] | Standard test method for shear properties of composite materials by V-notched rail shear method: ASTM D7078/D7078M—2012[S]. West Conshohocken, PA: ASTM International, 2012. |
[11] | WEAVER P M. Design of laminated composite cylindrical shells under axial compression[J]. Composites Part B: Engineering, 2000, 31(8): 669-679. |
[12] | WEAVER P M. Computer aided laminate selection using a graphical method[C]. 12th International Conference on Composite Materials. Paris: Woodhead Publishing Ltd, 1999. |
[13] | HILBURGER M W, STARNES J H. Buckling and failure of compression-loaded composite cylindrical shells with geometric and material imperfections[C]. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Austin: AIAA, 2005: 18-21. |
[14] | SUN G. Optimization of laminated cylinders for buckling [D]. Toronto: University of Toronto, 1987. |
[15] | 闫光, 韩小进, 阎楚良, 等. 复合材料圆柱壳轴压屈曲性能分析[J]. 复合材料学报, 2014, 31(3): 781-787. YAN G, HAN X J, YAN C L, et al. Buckling analysis of composite cylindrical shells with cover under axial compressive load[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 781-787 (in Chinese). |
[16] | 全国纤维增强塑料标准化技术委员会. 定向纤维增强塑料拉伸性能试验方法:GB/T 3354—1999[S]. 北京:中国标准出版社, 1999. National Technical Committee on Fiber Reinforced Plastic of Standardization Administration of China. Test method for tensile properties of oriented fiber reinforced plastics: GB/T 3354—1999[S]. Beijing: China Standards Press, 1999 (in Chinese). |
[17] | 全国纤维增强塑料标准化技术委员会. 单向纤维增强塑料平板压缩性能试验方法: GB/T 3856—2005[S]. 北京:中国标准出版社, 2005. National Technical Committee on Fiber Reinforced Plastic of Standardization Administration of China. Test method for compression properties of unidirectional fiber reinforced plastics: GB/T 3856—2005[S]. Beijing: China Standards Press, 2005 (in Chinese). |
[18] | PUCK A, SCHVRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 1998, 58(7): 1045-1067. |
[19] | 刘书田, 陈秀华, 曹先凡, 等. 夹芯圆柱壳稳定性优化[J]. 工程力学, 2005, 22(01): 135-140. LIU S T, CHEN X H, CAO X F. Optimization of buckling-prone cylindrical shells with porous material core[J]. Engineering Mechanics, 2005, 22(01): 135-140 (in Chinese). |
[20] | WILKINS D J, LOVE T S. Combined compression-torsion buckling tests of laminated composite cylindrical shells[J]. Journal of Aircraft, 1975, 12(11): 885-889. |
[21] | GEIER B, KLEIN H, ZIMMERMANN R. Buckling tests with axially compressed unstiffened cylindrical shells made from CFRP[J]. Buckling of Shell Structures, on Land, in the Sea and in the Air, 1991: 498-507. |