全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

滑石粉对微孔发泡木粉/聚丙烯复合材料结晶行为及泡孔结构的影响
Influence of talc on crystallization behavior and cellular structure of microcellular foamed wood flour/PP composites

DOI: 10.13801/j.cnki.fhclxb.20161123.002

Keywords: 滑石粉,超临界CO2,微孔发泡,结晶,木粉/聚丙烯复合材料,泡孔结构
talc
,supercritical CO2,microcellular foaming,crystallization,wood flour/polypropylene composites,cellular structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

以滑石粉为成核剂,超临界CO2为发泡剂,采用间歇釜式方法制备微孔发泡木粉/聚丙烯复合材料。采用DSC、XRD和SEM对微孔发泡木粉/聚丙烯复合材料的结晶行为与泡孔结构进行了测定与分析。结果表明:滑石粉的添加能够提高微孔发泡木粉/聚丙烯复合材料的结晶温度,诱导产生不完善的α晶型;能够提高聚合物基体的熔体黏度,减小泡孔尺寸,增加泡孔密度,促使泡孔尺寸分布更均匀,最终能够形成泡孔密度为1.0×109个/cm3、平均泡孔半径为16.4 μm、发泡倍率为18倍、表观密度约为0.055 g/cm3的微孔发泡木粉/聚丙烯复合材料。 The microcellular foamed wood flour/polypropylene composites were prepared by a microcellular batch foaming process using talc as the nucleating agent and supercritical CO2 fluid as foaming agent. The crystallization behavior and microcellular structure of impact fractured of microcellular foamed composite were investigated by differential scanning calorimeter (DSC), X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The results indicate that talc increases the crystallization rate and temperature of microcellular foamed wood flour/polypropylene composites and induces imperfect α crystal. The addition of talc improves the melt viscosity of the polymer matrix. The talc also decreases the size of the cellular, inhibit the formation of big cellular, cellular coalescence and collapse. The cellular density of wood flour/polypropylene composites can be up to 1.0×109/cm3, the average radius is 16.4 μm, and the expansion ratio can reach 18, the apparent density is 0.055 g/cm3. 省留学归国人员科学基金(LC2015011);中国博士后科学基金(2014T70303);国家自然科学基金青年项目(31100425)

References

[1]  王清文, 王伟宏, 宋永明, 等. 木塑复合材料与制品[M]. 北京:化学工业出版社, 2007. WANG Qingwen, WANG Weihong, SONG Yongming, et al. Wood plastic composite materials and products[M]. Beijing: Chemical Industry Press, 2007 (in Chinese).
[2]  OGAH A O, AFIUKWA J N, NDUJI A A. Characterization and comparison of rheological properties of agro fiber filled high-density polyethylene bio-composites[J]. Journal of Reinforced Plastics & Composites, 2013, 33(1): 37-46.
[3]  KHOSHKAVA V, KAMAL M R. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites[J]. ACS Applied Materials and Interfaces, 2014, 6(11): 8146-8157.
[4]  赵永生, 王克俭, 朱复华, 等. 蒙脱土/硅烷改性木粉/PVC复合材料[J]. 复合材料学报, 2007, 24(3): 63-71. ZHAO Yongsheng, WANG Kejian, ZHU Fuhua, et al. Properties of montmorillonite/silane-modified woodfloor/PVC composites[J]. Acta Materiae Compositae Sinica, 2007, 24(3): 63-71 (in Chinese).
[5]  敖欢, 刘廷华.木塑复合材料发泡成型技术研究进展[J]. 塑料工业, 2005, 33(9): 1-4. AO Huan, LIU Tinghua. The progress of wood plastic composite foaming technology studies[J]. Plastics Industry, 2005, 33(9): 1-4 (in Chinese).
[6]  FUJI M, TAKEI T, WATANABE T, et al. Wettability of fine silica powder surfaces modified with several normal alcohols[J]. Colloids and Surfaces, 1999, 154(1): 13-24.
[7]  SUH K W, PARK C P, MAURER M J, et al. Light weight cellular plastics[J]. Advanced Materials, 2000, 12(23): 1779-1789.
[8]  KROS A, GERRITSEN M, SPRAKEL V S I, et al. Silica-based hybrid material as bio compatible coating for glucose sensor[J]. Sensors and Actuators B Chemical, 2001, 81(1): 68-75.
[9]  TSUBOKAWA N, YOSHIKAWA S. Grafting of polymers with controlled molecular weight on to ultrafine silica surface[J]. Polymers Science (Part A): Polymer Chemistry, 1995, 33(3): 581-586.
[10]  GOEL S K, BECKMAN E J. Generation of microcellular polymeric foams using supercritical carbon dioxide I: Effete of pressure and temperature on nucleation[J]. Polymer Engineering and Science, 1994, 34(14): 1137-1147.
[11]  GOEL S K, BECKMAN E J. Generation of microcellular polymeric foams using supercritical carbon dioxide.Ⅱ:Cell growth and skin formation[J]. Polymer Engineering and Science, 1994, 34(14): 1138-1156.
[12]  XU Zhimei, JIANG Xiulei, LIU Tao, et al. Foaming of polypropylene with supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2007, 41: 299-310.
[13]  ARROYO M, LOPEZ M, AVALOS F. Crystallization kinetics of polypropylene. Ⅱ: Effect of the addition of short glass fibers[J]. Polymer, 1997, 38(22): 5587-5593.
[14]  LI Bin, ZHU Xinyuan, HU Guohua, et al. Supercritical carbon dioxide-induced melting temperature depression and crystallization of syndiotactic polypropylene[J]. Polymer Engineering and Science, 2008, 48(8): 1608-1614.
[15]  JIANG Xiulei, LIU Tao, XU Zhimei, et al. Effects of crystal structure on the foaming of isotactic polypropylene using supercritical carbon dioxide as a foaming agent[J]. The Journal of Supercritical Fluids, 2009, 48(2): 167-175.
[16]  CHEN L, SHETH H, WANG X. Effects of shear stress and pressure drop rate on microcellular foaming process[J]. Journal of Cellular Plastics, 2001, 37(4): 353-363.
[17]  孙剑, 李涛, 张俊平, 等. 滑石粉对 PB-1 熔融/结晶行为的影响[J]. 工程塑料应用, 2012, 40(7): 71-75. SUN Jian, LI Tao, ZHANG Junping, et al. Effect of talc powder on the melting and crystallization behavior of PB-1[J]. Engineering Plastics Applicantion, 2012, 40(7): 71-75 (in Chinese).
[18]  董绍俊, 车广礼, 谢远武.化学修饰电极(修订版)[M].北京:科学出版社, 2003: 501-538. DONG Shaojun, CHE Guangli, XIE Yuanwu. Chemical modified electrodes (revision)[M]. Beijing: Science Press, 2003: 501-538 (in Chinese).
[19]  NAGUIB H E, PARK C B, LEE P C. Effect of talc content on the volume expansion ratio of extruded PP foams[J]. Journal of Cellular Plastics, 2003, 39(6): 499-511.
[20]  张平, 王晓军, 彭海燕, 等. PP/HDPE/滑石粉复合材料微孔发泡实验研究[J]. 塑料工业, 2011, 39(10): 42-44. ZHANG Ping, WANG Xiaojun, PENG Haiyan, et al. Experimental study on micro porous foaming of PP/HDPE/Talc composites[J]. China Plastics Industry, 2011, 39(10): 42-44 (in Chinese).
[21]  中华人民共和国国家质量监督检验检疫总局.塑料密度和相对密度测试方法: GB1033-86—2006[S]. 北京:中国标准出版社, 2006. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Test method for density and relative density of plastics: GB1033-86—2006[S]. Beijing: Standards Press of China, 2006 (in Chinese).
[22]  LI Dachao, LIU Tao, ZHAO Ling, et al. Foaming of linear isotactic polypropylene based on its non-isothermal crystallization behaviors under compressed CO2[J]. The Journal of Supercritical Fluids, 2011, 60: 89-97.
[23]  YIN Jun, WANG Shaohui, ZHANG Yong, et al. Isothermal crystallization kinetics of PP in PP/Mg(OH)2 composites[J]. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(14): 1914-1923.
[24]  王鹏. 高填充木塑复合材料流变行为与结晶性质研究[D].上海:上海交通大学, 2011. WANG Peng, High fill wood plastic composite rheological behavior and crystallization properties [D].Shanghai: Shanghai Jiao Tong University, 2011 (in Chinese).
[25]  AREFMANESH A, ADVANI S G, MICHAELIDES E E. A numerical study of bubble growth during low pressure structure foam molding process[J]. Polymer Engineering and Science, 1990, 30(20): 1330-1337.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133