|
- 2017
铺层取向误差对CFRP可折叠管件半片变形影响的数值分析与试验研究
|
Abstract:
以单层厚度为0.04 mm的碳纤维/树脂(T300/5228,CFRP)超薄单向预浸料,采用真空袋-固化炉成型方法制备了一系列不同铺层复合材料“Ω”型可折叠管件半片,并采用ANSYS软件进行了有限元分析,通过实验和数值模拟方法研究了铺层方式及取向误差对变形的影响,制备的四种铺层方式制件实验测量其变形趋势与相应模拟分析结果一致,得到了铺层取向误差对变形影响较小的铺层方式。研究发现:±45°铺层比0°铺层的铺层取向误差对变形影响更大,增加90°铺层可以在一定程度上控制因铺层取向误差导致的可折叠管件半片的变形。研究结果表明通过铺层设计可以在一定程度上实现对CFRP可折叠管件半片变形的控制。 The collapsible tube semi-sheet with the different plies composite "Ω" figuration part was manufactured by the method of vacuum-oven cured using carbon fibre reinforced plastics (CFRP,T300/5228) composite as ultra-thin unidirectional prepreg with 0.04mm ply thickness,and was analyzed by ANSYS software of finite element analysis.The effects of ply mode and the deviation of orientation angle on deformation were studied.Four ply mode parts were manufactured,and the deformation measurements are consistent with the numerical simulation analysis results.The ply mode of less effect on the deformation was obtained.The research show that ±45°plies affecte on deformation more than that of 0°ply,and 90°plies addition can control ply orientation deformation,which can partly control collapsible tube semi-sheet deformation.The CFRP composite collapsible tube semi-sheet deformation can be controlled to a certain extent by stacking sequence design.
[1] | LEIPOLD M, RUNGE H, SICKINGER C. Large SAR membrane antennas with lightweight deployable booms[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Hawaii:AIAA 2007, 2184. |
[2] | SICKINGER C, HERBECK L, BREITBACH E. Structural engineering on deployable CFRP booms for a solar propelled sailcraft[J]. Acta Astronautica, 2006, 58(4):185-196. |
[3] | TWARDOWSKI T E, GEIL P H. Curing in thick composite laminates:experiment and simulation[J]. Journal of Composite Materials, 1993, 27(3):216-250. |
[4] | BOGETTI T A, GILLESPIE J W. Two-dimensional cure simulation of thick thermosetting composites[J]. Journal of Composite Materials, 1991, 25(3):239-273. |
[5] | BOGETTI T A, GILLESPIE J W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials, 1992, 26(5):626-660. |
[6] | ERSOY N, POTTER K, WISNOM M R, CLEGG M J. Development of spring-in angle during cure of a thermosetting composite[J]. Composites:Part A:Applied Science and Manufacturing, 2005, 36(12):1700-1706. |
[7] | RADFORD D W, RENNICK T S. Separating sources of manufacturing distortion in laminated composites[J]. Journal of Reinforced Plastics and Composites, 2000, 19(8):621-641. |
[8] | DARROW Jr D A, SMITH L W. Isolating components of processing induced warpage in laminated composites[J]. Journal of Composite Materials, 2002, 36(21):2407-2419. |
[9] | POTTER K D, CAMPBELL M, LANGER C. The generation of geometrical deformations due to tool/part interaction in the manufacture of composite components[J]. Composites Part A:Applied Science and Manufacturing, 2005, 36(2):301-308. |
[10] | TWIGG G, POURSARTIP A, FERNLUND G. An experimental method for quantifying tool-part shear interaction during composites processing[J]. Composites Science and Technology, 2003, 63(13):1985-2002. |
[11] | TWIGG G, POURSARTIP A, FERNLUND G. Tool-part interaction in composites processing Part I:Experimental investigation and analytical model[J]. Composites Part A:Applied Science and Manufacturing, 2004, 35(1):121-133. |
[12] | TWIGG G, POURSARTIP A, FERNLUND G. Tool-part interaction in composites processing:Part-Numerical modeling[J]. Composites part A:Applied Science and Manufacturing, 2004, 35(1):135-141. |
[13] | 赵渠森, 谢富源, 黎观生, 等. 先进复合材料手册[M]. 北京:机械工业出版社, 2003:1005. ZHAO Q S, XIE F Y, LI G S, et al. Handbook of advanced composite materials[M]. Beijing:China Machine Press, 2003:1005(in Chinese). |
[14] | PRASATYA P, MCKENNA G B, SIMON S L. A viscoelastic model for predicting isotropic residual stresses in thermosetting materials:effect of processing parameters[J]. Journal of Composite Materials, 2001, 35(10):826-849. |
[15] | HYER M W. Some observations on the room-temperature shapes of unsymmetrically laminated composites[J]. Composite Materials, 1981, 15(2):175-193. |
[16] | HYER M W. Calculation of the room-temperature shapes of unsymmetrically laminated composites[J]. Composite Materials, 1981, 16(4):296-311. |
[17] | REN L B. A theoretical study on shape control of arbitrary lay-up laminates using piezoelectric actuators[J]. Composite Structures, 2008, 83(1):110-118. |
[18] | REHNMARK F, PRYOR M, HOLMES B, et al. Development of a deployable nonmetallic boom for reco-nfigurable systems of small spacecraft[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Hawaii:AIAA, 2007:2184. |
[19] | ALBERT C, FERNLUND G. Spring-in and warpage of angled composite laminates[J]. Composites Science and Technology, 2002, 62(14):1895-1912. |
[20] | FERLUND G, RAHMAN N, COURDJI R, et al. Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts[J]. Composites Part A:Applied Science and Manufacturing, 2002, 33(3):341-351. |
[21] | PLEPYS A R, FARRIS R J. Evolution of residual stresses in three-dimensionally constrained epoxy resin[J]. Polymer, 1990, 31(10):1932-1936. |
[22] | HYER M W. The room-temperature shapes of four-layer unsymmetric cross-ply laminates[J]. Composite Materials, 1982, 16(4):318-40. |
[23] | REN L, PARVIZI A, LI Z. Cured shape of cross-ply composite thin shells[J]. Composite Materials, 2003, 37(20):1801-1820. |
[24] | DANO M L, HYER M W. Thermally-induced deformation behavior of unsymmetric laminates[J]. Solids Structure, 1998, 35(17):2101-2120. |
[25] | MATTIONI F, WEAVER P M, POTTER K D, et al. Analysis of thermally induced multistable composites[J]. Solids and Structures, 2008, 45(2):657-675. |