|
- 2016
壳聚糖/聚己内酯复合膜的微观形态与结构特征
|
Abstract:
以性能优异的生物可降解高分子聚己内酯(PCL)与壳聚糖(CS)进行冰醋酸酸溶复合,并采用流延法制备CS∶PCL质量比分别为0∶100、5∶95、10∶90、15∶85、20∶80、100∶0的CS/PCL复合膜,通过XRD、FTIR、1HNMR、SEM及AFM对复合膜进行了微观形态与结构表征。结果表明:PCL与CS具有良好的相容性,二者分子间形成了较强的氢键,且伴有PCL端位羧基与CS侧链羟基反应生成了新的化学键,使CS/PCL复合膜结构稳定。CS/PCL复合膜的复合比对其结构特征及微观形态影响较大。CS/PCL(10∶90)复合膜的结晶度为29.97%,孔隙率达到85.61%,呈现表面防渗漏、内部多孔且连通的微观结构,初步确定10∶90为二者的最佳复合比。不同复合比的CS/PCL复合膜的微观形态与结构分析为其开发、应用提供了重要的理论依据。 The poly(ε-caprolactone) (PCL) and chitosan (CS) as excellent biodegradable polymers were blended in glacial acetic acid solution, and then the CS/PCL composite membranes were prepared by casting method with different CS:PCL mass ratios of 0:100, 5:95, 10:90, 15:85, 20: 80, 100:0. The micromorphology and structure characteristics were detected by the XRD, FTIR, 1HNMR, SEM and AFM. The results show that PCL and CS have good compatibility, and strong hydrogen bonds form between molecules and new chemical bonds between PCL end carboxyl and CS side chain hydroxyl, which makes the structure of CS/PCL composite membranes stable. The blend ratio of CS/PCL composite membranes has a great influence on the structure characteristics and micromorphology. The crystallinity and porosity of CS/PCL(10:90)composite membranes are 29.97% and 85.61% respectively, and it shows prevented leakage surface and internal connected porous microstructure. All the results initially identifies 10:90 as the best blend ratio between CS and PCL. The micromorphology and structure analysis of CS/PCL composite membranes with different blend ratios provide an important theoretical basis for their development and application. 国家自然科学基金(51103110);湖北省教育厅项目(164017)
[1] | LIAO S, WANG W. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration[J]. Biomaterials, 2005, 26(36): 7564-7571. |
[2] | ORGEL J, SAN ANTONIO J D, ANTIPOVA O. Molecular and structural mapping of collagen fibril interactions[J]. Connective Tissue Research, 2011, 52(1): 2-17. |
[3] | RINAUDO M. Chitin and chitosan: Properties and applications[J]. Progress in Polymer Science, 2006, 31(7): 603-632. |
[4] | SITU F M, ZHAO J P, DI X, et al. The preparation of PVA/quaternized chitosan composite hydrogel and its application as artificial dressing for burn wound healing[J]. Journal of Functional Materials, 2015, 46(9): 09133-09139. |
[5] | ASHLEIGH C, RACHAEL O, HONGYAN M, et al. Chitosan-based nanofibrous membranes for antibacterial filter applications[J]. Carbohydrate Polymers, 2013, 92(1): 254-259. |
[6] | 吕芳兵, 张传杰, 王潮霞, 等. 壳聚糖/纤维素生物质发泡复合材料多孔结构的表征[J]. 复合材料学报, 2015, 32(3): 632-639. LU F B, ZHANG C J, WANG C X, et al. Porous structural characterization of chitosan/cellulose biomass foaming composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 632-639 (in Chinese). |
[7] | PITT C G, CHASALOW F I. The degradation of poly (ε-caprolactone) in vivo[J]. Journal of Applied Polymer Science, 1981, 26(11): 3779. |
[8] | YING W, JUAN G, JUN Z H, et al. Biodegradability of conducting chitosan-g-polycaprolactone/polypyrroleconduits[J]. Polymer Degradation and Stability, 2010, 95(10): 1994-2002. |
[9] | AVEROUS L, MORO L, DOLE P, et al. Properties of thermoplastic blends: Starch-polycaprolactone[J]. Polymer, 2000, 41(11): 4157-4167. |
[10] | GOMES S R, RODRIGUES G, MARTINS G G, et al. In vitro and in vivo evaluation of electrospunnanofibers of PCL, chitosan and gelatin: A comparative study[J]. Original Materials Science and Engineering, 2015, 46(3): 348-358. |
[11] | SUN Y, LI F H, ZHANG W J, et al. Progress on the chitosan/chitosan oligosaccharide biomaterials modified by polycaprolactone[J]. New Chemical Material, 2013, 41(6): 1-6. |
[12] | YOUNG T H, WANG I J, HU F R, et al. Fabrication of a bioengineered corneal endothelial cell sheet using chitosan/polycaprolactone blend membranes[J]. Colloids and Surfaces B: Biointerfaces, 2014, 116(1): 403-410. |
[13] | 杨文静, 付静, 何磊, 等. 静电纺丝制备壳聚糖/聚己内酯血管支架及表征[J]. 复合材料学报, 2011, 28(1): 104-108. YANG W J, FU J, HE L, et al. Preparation and characterization of chitosan/polycaprolactone vascular scaffolds by electrospinning[J]. Acta Materiae Compositae Sinica, 2011, 28(1): 104-108 (in Chinese). |
[14] | LIEN V S, ILINE S, BERT D S, et al. Polycaprolactone/chitosan blend nanofibreselectrospun from an acetic acid/formic acid solvent system[J]. Carbohydrate Polymers, 2012, 88(4): 1221-1226. |
[15] | SARMILA S, ABHISEK S, RAJASHREE N, et al. Synthesis of chitosan-polycaprolactone blend for control delivery of ofloxacindrug[J]. Carbohydrate Polymers, 2010, 76(1): 106-113. |
[16] | SARASAM A, MADIHALLY S V. Characterization of chitosan-polycaprolactone blends for tissue engineering applications[J]. Biomaterials, 2005, 26(27): 5500-5508. |
[17] | 黄励中, 林宗琼, 佘厚德, 等. 壳聚糖-聚己内酯复合膜的制备及其性能研究[J]. 膜科学与技术, 2008, 28(6): 48-52. HUANG L Z, LIN Z Q, SHE H D, et al. Studies on the preparation and performance of chitosan-polycaprolactone composite membranes[J]. Membrane Science and Technology 2008, 28(6): 48-52 (in Chinese). |
[18] | VERA N M, SOFIA G C, NATáLIA M A, et al. New poly(ε-caprolactone)/chitosan blend fibers for tissue engineering applications[J]. Acta Biomaterialia, 2010, 6(2): 418-428. |
[19] | KADLER K, HOLMES D, TROTTER J, et al. Collagen fibril formation[J]. Biochemical Journal, 1996, 316(2): 1-11. |
[20] | MAO Y F, XIN M H, LI M C H, et al. Mixed monolayers of poly(ε-caprolactone)grafting O-sulfonated chitosan with cholesterol[J]. Journal of Functional Materials, 2014, 45(15): 15031-15035. |
[21] | SEOKWON P, JACKSON D M, SUNDARARAJAN V M, et al. A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering[J]. Acta Biomaterialia, 2013, 9(3): 5630-5642. |