|
- 2015
碳纤维网络增强环氧树脂基复合材料的制备与表征
|
Abstract:
为提高碳纤维/环氧树脂复合材料的刚性和热尺寸稳定性, 首先利用短切碳纤维制备了碳纤维网络增强体(CFNR), 并将其与环氧树脂复合制备了CFNR/环氧树脂新型复合材料.然后, 分别利用扫描电镜和热机械分析仪对CFNR/环氧树脂复合材料的微观结构和热力学性能进行了表征.结果表明:CFNR/环氧树脂复合材料中有明显的网络节点, 即碳质粘结点;CFNR/环氧树脂复合材料具有较好的导电性、较高的刚性和较低的热膨胀性, 其弹性模量分别为常规短切碳纤维/环氧树脂复合材料及纯环氧树脂的3倍和6倍, 平均热膨胀系数(60~200 ℃)分别为常规短切碳纤维/环氧树脂复合材料的1/15及纯环氧树脂的1/40;随着温度升高, CFNR/环氧树脂复合材料、常规短切碳纤维/环氧树脂复合材料及纯环氧树脂的弹性模量均因环氧树脂变软而降低, 当温度高于80 ℃时, CFNR/环氧树脂复合材料的弹性模量分别约为常规短切碳纤维/环氧树脂复合材料的7倍和纯环氧树脂的近70倍.研究结论可以为开发高刚性、低膨胀聚合物基复合材料提供实验依据和理论指导. In order to promote the stiffness and thermal dimensional stability of carbon fiber/epoxy composites, carbon fiber network reinforcement (CFNR) was fabricated firstly by short carbon fiber, and mixed with epoxy to prepare new type of CFRN/epoxy composites. Then, the microstructure and thermal mechanical properties of CFRN/epoxy composite were characterized by scanning electron microscopy and thermal mechanical analyzer, respectively. The results indicate that there are obvious network nodes of carbon-based adhesive points in CFNR/epoxy composites, and CFNR/epoxy composites exhibit relatively high electric conductivity, high stiffness and low thermal expansion, the elastic modulus is about 3 times and 6 times of that of regular short carbon fiber/epoxy composite and pure epoxy, respectively. The average thermal expansion coefficient (60-200 ℃) is 1/15 of that of regular short carbon fiber/epoxy composite, and 1/40 of that of pure epoxy, respectively. With the temperature increasing, the elastic moduli of CFNR/epoxy composite, regular short carbon fiber/epoxy composite and pure epoxy are dropping due to the softening of epoxy. When the temperature is above 80 ℃, the elastic modulus of CFNR/epoxy composite is about 7 times of that of regular short carbon fiber/epoxy composite, and nearly 70 times of that of pure epoxy. The research conclusions can provide experimental basis and theoretical direction for the exploring of polymer matrix composites with high stiffness and low thermal expansion. 湖南大学汽车车身先进设计与制造国家重点实验室课题(734215002)
[1] | Fitzer E. The future of carbon-carbon composites[J]. Carbon, 1987, 25(2): 163-190. |
[2] | Hong M S, Choi W K, An K H, et al. Electromagnetic interference shielding behaviors of carbon fibers-reinforced polypropylene matrix composites: II. Effects of filler length control[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3901-3904. |
[3] | Sharma M, Rao I M, Bijwe J. Influence of orientation of long fibers in carbon fiber-polyetherimide composites on mechanical and tribological properties[J]. Wear, 2009, 267(5-8): 839-845 |
[4] | Xun H J, Zhang L T, Wang Y G, et al. The effects of Z-stitching density on thermophysical properties of plain woven carbon fiber reinforced silicon carbide composites[J]. Ceramics International, 2014, 41(1): 283-290. |
[5] | Zhang Q, Cai J, Gao Q. Simulation and experimental study on thermal deep drawing of carbon fiber woven composites[J]. Journal of Materials Processing Technology, 2013, 214(4): 802-810. |
[6] | He F, Li H, Wan Y Z, et al. Plasma treatment and biomimetic deposition of the 3D braided carbon fiber reinforced PEEK composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 77-81 (in Chinese). 何芳, 李皓, 万怡灶, 等. 三维编织炭纤维增强聚醚醚酮复合材料等离子体处理及其表面仿生沉积[J]. 复合材料学报, 2011, 28(2): 77-81. |
[7] | Han S, Duan Y X, Li C, et al. Bending properties of non-crimp stitched carbon fabric reinforced composites of different knit patterns[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 52-57 (in Chinese). 韩帅, 段跃新, 李超, 等. 不同针织结构经编炭纤维复合材料弯曲性能[J]. 复合材料学报, 2011, 28(5): 52-57. |
[8] | Wang X G, Niu Z W, Gu W L. Preparation and property of short carbon fiber reinforced hydroxyapatite bio-composite[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 105-110 (in Chinese). 王新广, 牛宗伟, 谷万里. 短切炭纤维/羟基磷灰石生物复合材料的制备及性能[J]. 复合材料学报, 2011, 28(2): 105-110. |
[9] | Cem O N, Gamze K L, Ayse A, et al. Short carbon fiber reinforced polycarbonate composites: Effects of different sizing materials[J]. Composites Part B: Engineering, 2014, 62: 230-235. |
[10] | Nevin G K, Ayse A. Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites[J]. Composites Part B: Engineering, 2013, 51: 270-275. |
[11] | Davies I J, Rawlings R D. Microstructural investigation of low-density carbon-carbon composites[J]. Journal of Materials Science, 1994, 29(2): 338-344. |
[12] | Liu C, Han J C, Zhang X H, et al. Lightweight carbon-bonded carbon fiber composites prepared by pressure filtration technique[J]. Carbon, 2013, 59: 547-554. |
[13] | Wang C, Li K Z, Li H J, et al. CVI treatment of short carbon fibers and their dispersion in CFRC[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 135-140 (in Chinese). 王闯, 李克智, 李贺军, 等. 短切炭纤维的CVI 处理及其在CFRC中的分散性[J]. 复合材料学报, 2007, 24(1): 135-140. |
[14] | Wagner M. Thermal analysis in practice[M]. Lu L M, translated. Shanghai: Donghua University Press, 2011: 130-131 (in Chinese). Wagner M. 热分析应用基础[M]. 陆立明, 译. 上海: 东华大学出版社, 2011: 130-131. |
[15] | Li W J, Shu L L, Wu G, et al. Research development of network structure reinforced metallic matrix composite[J]. Materials for Mechanical Engineering, 2012, 36(7): 1-6 (in Chinese). 李文静, 舒玲玲, 吴刚, 等. 网络结构增强金属基复合材料的研究进展[J]. 机械工程材料, 2012, 36(7): 1-6. |
[16] | Nascimento J F, Ezquerra T A, Seferis J C. Anisotropy of electrical conductivity and structure in polymer-carbon fiber composite materials[J]. Polymer Composites, 1995, 16(2): 109-113. |
[17] | Linares S A, Ibarra R L. Influence of the nature and the content of carbon fiber on properties of thermoplastic polyurethane-carbon fiber composites[J]. Journal of Applied Polymer Science, 2003, 90(10): 2676-2683. |
[18] | Luo H L, Xiong G Y, Ma C Y, et al. Preparation and performance of long carbon fiber reinforced polyamide 6 composites injection-molded from core/shell structured pellets[J]. Materials and Design, 2014, 64: 294-300. |
[19] | Burchell T D, Judkins R R. A novel carbon fiber based material and separation technology[J]. Energy Conversion and Management, 1997, 38(Suppl.): 99-104. |
[20] | Kimber G M, Jagtoyen M, Fei Y Q, et al. Fabrication of carbon fiber composites for gas separation[J]. Gas Separa-tion & Purification, 1996, 10(2): 131-136. |