全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

MnO2纳米棒-还原石墨烯复合修饰玻碳电极用于苋菜红的检测
Preparation of MnO2 nanorods-reduced graphene composite modified electrodes and application in detection of amaranth

DOI: 10.13801/j.cnki.fhclxb.20180329.003

Keywords: MnO2纳米棒,还原石墨烯,修饰电极,苋菜红,电催化氧化
MnO2 nanorods
,reduced graphene oxide,modified electrode,amaranth,electrocatalytic oxidation

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用电化学还原法制备MnO2纳米棒-还原石墨烯复合修饰电极(MnO2 NRs-ErGO/GCE)用于苋菜红的检测。采用SEM和XRD分别对修饰电极材料进行微观形貌和成分结构表征。通过循环伏安法考察了苋菜红在裸电极、ErGO/GCE和MnO2 NRs-ErGO/GCE上的电化学行为,并对测定条件如pH值、富集电位、富集时间进行了优化。结果表明,MnO2 NRs-ErGO增大了GCE电化学活性面积,提高了苋菜红的电化学氧化响应。在最优的检测条件下,MnO2 NRs-ErGO/GCE线性扫描伏安法检测苋菜红线性范围为2.0×10-8~1.0×10-5 mol/L和1.0×10-5~4.0×10-4 mol/L,检测限为1.0×10-8 mol/L。MnO2 NRs-ErGO/GCE用于真实饮料样品检测,获得满意结果。 MnO2 nanorods-reduced graphene composite modified glassy carbon electrode (MnO2 NRs-ErGO/GCE) was prepared for the detection of amaranth using electrochemical reduction method. The surface morphology and crystal structure of the modified materials were characterized by SEM and XRD. The electrochemical behavior of amaranth on the bare electrode, ErGO/GCE and MnO2 NRs-ErGO/GCE modified electrodes were investigated by cyclic voltammetry, respectively. The determination conditions (including pH value, accumulation potential, and accumulation time) were optimized systematically. The results show that MnO2 NRs-ErGO increases the electrochemical active area of GCE and improves the electrochemical oxidation reaction of amaranth significantly. Under the optimum detection conditions, the peak current is found to be linear with amaranth concentrations in the range from 2.0×10-8-1.0×10-5 mol/L and 1.0×10-5-4.0×10-4 mol/L with a low detection limit of 1.0×10-8 mol/L. The satisfactory results are obtained in the analysis of actual beverage samples by using the proposed modified electrode. 国家自然科学基金(61703152);湖南省自然科学基金(2016JJ4010;2018JJ3134);衡阳师范学院省级平台开放基金(GD16K02);湖南工业大学博士学科建设项目

References

[1]  ALI H. Biodegradation of synthetic dyes:A review[J]. Water, Air & Soil Pollution, 2010, 213(1-4):251-273.
[2]  BAZREGAR M, RAJABI M, YAMINI Y, et al. In-tube electro-membrane extraction with a sub-microliter organic solvent consumption as an efficient technique for synthetic food dyes determination in foodstuff samples[J]. Journal of Chromatography A, 2015, 1410:35-43.
[3]  TANG T X, XU X J, WANG D M, et al. A rapid and green limit test method for five synthetic colorants in foods using polyamide thin-layer chromatography[J]. Food Analytical Methods, 2015, 8(2):459-466.
[4]  HAN Q, WANG X, YANG Z, et al. Fe3O4@rGO doped molecularly imprinted polymer membrane based on magnetic field directed self-assembly for the determination of amaranth[J]. Talanta, 2014, 123:101-108.
[5]  ZHANG J, WANG M, SHENTU C, et al. Simultaneous determination of the isomers of Ponceau 4R and Amaranth using an expanded graphite paste electrode[J]. Food Chemistry, 2014, 160:11-15.
[6]  JIAN J U, LI-PING G U O. Sensitive voltammetric sensor for amaranth based on ordered mesoporous carbon[J]. Chinese Journal of Analytical Chemistry, 2013, 41(5):681-686.
[7]  CHANDRAN S, LONAPPAN L A, THOMAS D, et al. Development of an electrochemical sensor for the determination of Amaranth:A synthetic dye in soft drinks[J]. Food Analytical Methods, 2014, 7(4):741-746.
[8]  GAO Y, WANG L, ZHANG Y, et al. Electrochemical behavior of amaranth and its sensitive determination based on Pd-doped polyelectrolyte functionalized graphene modified electrode[J]. Talanta, 2017, 168:146-151.
[9]  GAN T, SUN J, HUANG K, et al. A graphene oxide-mesoporous MnO2 nanocomposite modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of hydroquinone and catechol[J]. Sensors and Actuators B:Chemical, 2013, 177:412-418.
[10]  ZALACAIN A, ORDOUDI S A, BLAZQUEZ I, et al. Screening method for the detection of artificial colours in saffron using derivative UV-Vis spectrometry after precipitation of crocetin[J]. Food Additives and Contaminants, 2005, 22(7):607-615.
[11]  HONG Y G, GU J D. Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain[J]. Applied Microbiology and Biotechnology, 2010, 88(3):637-643.
[12]  PEREZ-URQUIZA M, BELTRAN J L. Determination of dyes in foodstuffs by capillary zone electrophoresis[J]. Journal of Chromatography A, 2000, 898(2):271-275.
[13]  ZHANG B, DU D, MENG M, et al. Determination of amaranth in beverage by indirect competitive enzyme-linked immunosorbent assay (ELISA) based on anti-amaranth monoclonal antibody[J]. Food Analytical Methods, 2014, 7(7):1498-1505.
[14]  SUN W, JIAO K, WANG X, et al. Electrochemical studies of the reaction between albumin and amaranth and its analytical application[J]. Journal of Electroanalytical Chemistry, 2005, 578(1):37-43.
[15]  WANG M, GAO Y, SUN Q, et al. Ultrasensitive and simultaneous determination of the isomers of Amaranth and Ponceau 4R in foods based on new carbon nanotube/polypyrrole composites[J]. Food Chemistry, 2015, 172:873-879.
[16]  JI L, ZHANG Y, YU S, et al. Morphology-tuned preparation of nanostructured resorcinol-formaldehyde carbonized polymers as highly sensitive electrochemical sensor for amaranth[J]. Journal of Electroanalytical Chemistry, 2016, 779:169-175.
[17]  ZHANG Y, GAN T, WAN C, et al. Morphology-controlled electrochemical sensing amaranth at nanomolar levels using alumina[J]. Analytica Chimica Acta, 2013, 764:53-58.
[18]  WANG M, SUN Y, YANG X, et al. Sensitive determination of Amaranth in drinks by highly dispersed CNT in graphene oxide "water" with the aid of small amounts of ionic liquid[J]. Food Chemistry, 2015, 179:318-324.
[19]  任芳, 朱光明, 任鹏刚. 纳米石墨烯复合材料的制备及应用研究进展[J]. 复合材料学报, 2014, 31(2):263-272. REN F, ZHU G M, REN P G. The latest advances in preparation and application of nano graphene composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):263-272(in Chinese).
[20]  FAN Z, YAN J, WEI T, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J]. Advanced Functional Materials, 2011, 21(12):2366-2375.
[21]  LI L, RAJI A R O, TOUR J M. Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-perfor-mance lithium ion batteries[J]. Advanced Materials, 2013, 25(43):6298-6302.
[22]  QIAN Y, LU S, GAO F. Preparation of MnO2/graphene composite as electrode material for supercapacitors[J]. Journal of Materials Science, 2011, 46(10):3517-3522.
[23]  李传宝, 刘海辉, 苗锦雷, 等. 还原氧化石墨烯/MnO2气凝胶对甲醛的去除[J]. 复合材料学报, 2016, 33(12):2831-2839. LI C B, LIU H H, MIAO J L, et al. In removal of formaldehyde with reduced graphene oxide/MnO2 aerogel[J]. Acta Materiae Compositae Sinica, 2016, 33(12):2831-2839(in Chinese).
[24]  DENG P, XU Z, KUANG Y. Electrochemically reduced graphene oxide modified acetylene black paste electrode for the sensitive determination of bisphenol A[J]. Journal of Electroanalytical Chemistry, 2013, 707:7-14.
[25]  DENG P, XU Z, FENG Y. Acetylene black paste electrode modified with graphene as the voltammetric sensor for selective determination of tryptophan in the presence of high concentrations of tyrosine[J]. Materials Science and Engineering C, 2014, 35:54-60.
[26]  DENG P, XU Z, LI J. Simultaneous voltammetric determination of 2-nitrophenol and 4-nitrophenol based on an acetylene black paste electrode modified with a graphene-chitosan composite[J]. Microchimica Acta, 2014, 181(9-10):1077-1084.
[27]  HE Q, LIU J, LIU X. Preparation of Cu2O-reduced graphene nanocomposites modified electrode towards ultrasensitive dopamine detection[J]. Sensor, 2018, 18(1):DOI:10.3390/s18010199.
[28]  HUMMERS J R W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6):1339.
[29]  LAVIRON E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 101(1):19-28.
[30]  HU S, WU K, YI H, et al. Voltammetric behavior and determination of estrogens at Nafion-modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide[J]. Analytica Chimica Acta, 2002, 464(2):209-216.
[31]  CARNEIRO P A, UMBUZEIRO G A, OLIVEIRA D P, et al. Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes[J]. Journal of Hazardous Materials, 2010, 174(1):694-699.
[32]  BLANCO C C, CAMPANA A M G, BARRERO F A. Derivative spectrophotometric resolution of mixtures of the food colourants Tartrazine, Amaranth and Curcumin in a micellar medium[J]. Talanta, 1996, 43(7):1019-1027.
[33]  GAN T, SHI Z, DENG Y, et al. Morphology-dependent electrochemical sensing properties of manganese dioxide-graphene oxide hybrid for guaiacol and vanillin[J]. Electrochimica Acta, 2014, 147:157-166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133