全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

酸化处理多壁碳纳米管/氰酸酯树脂复合材料性能
Properties of acid treated multi-walled carbon nanotubes/cyanate ester resin composites

DOI: 10.13801/j.cnki.fhclxb.20180326.001

Keywords: 氰酸酯树脂,碳纳米管,共混改性,韧性,介电性能
cyanate ester
,carbon nanotubes,blending modification,toughness,dielectric property

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用酸化处理的多壁碳纳米管(MWCNTs)增强双酚A型氰酸酯-酚醛型氰酸酯(BCE-NCE)树脂。通过SEM、TEM对MWCNTs/BCE-NCE树脂复合材料微观结构进行表征,利用DSC、DMA和TG/DTA对MWCNTs/BCE-NCE树脂复合材料热性能进行研究,采用电子拉力机对MWCNTs/BCE-NCE树脂复合材料力学性能进行测试,采用谐振腔法对MWCNTs/BCE-NCE树脂复合材料介电性能进行测试。结果表明,混酸处理过的MWCNTs在BCE-NCE树脂基体中的分散效果较好。MWCNTs对BCE-NCE树脂热力学性能影响不大,当MWCNTs添加量为0.8wt%时,BCE-NCE树脂玻璃化转变温度(Tg)从298℃下降到285℃,但仍维持较高水平。当MWCNTs添加量为0.6wt%时,MWCNTs/BCE-NCE树脂复合材料冲击强度为11.40 kJ/m2,提高了40.7%。MWCNTs的加入增加了BCE-NCE树脂介电常数和介电损耗,当MWCNTs添加量为0.8wt%、频率为1 GHz时,MWCNTs/BCE-NCE树脂复合材料介电常数为5.1,介电损耗为0.032。因此,MWCNTs/BCE-NCE树脂复合材料未来可在耐高温复合材料和电子等行业应用。 Multi-walled carbon nanotubes (MWCNTs) treated with mixed acids were used to reinforce the bisphenol A cyanate ester-novolac cyanate ester(BCE-NCE) resin. The microstructure of the MWCNTs/BCE-NCE composites was characterized by SEM and TEM. The thermal performances of the MWCNTs/BCE-NCE composites were investigated by DSC, DMA and TG/DTA. The mechanical properties of the MWCNTs/BCE-NCE composites were investigated by electronic tension machine. The dielectric properties of the MWCNTs/BCE-NCE resin were investigated by cavity resonator method. The results show that the dispersion properties of the treated MWCNTs in the BCE-NCE resin matrix are improved compared with the untreated analogue. MWCNTs have little effect on the BCE-NCE resin thermodynamic properties. Upon addition of 0.8wt% MWCNTs to the BCE-NCE resin, the glass transition temperature(Tg) of the cured MWCNTs/BCE-NCE composites changes from 298℃ to 285℃, maintaining a relatively high value. The BCE-NCE resin impact strength of 0.6wt% MWCNTs is 11.40 kJ/m2, and the toughness increases by 40.7%. The dielectric constant and dielectric loss of MWCNTs/BCE-NCE composites increase obviously. Upon addition of 0.8wt% of MWCNTs to the resin, the dielectric constant is 5.1 and dielectric loss is 0.032 under 1 GHz frequency. Therefore, the MWCNTs/BCE-NCE composites may be suitable for future applications involving high performance composites and electronic industry. 中国博士后科学基金(2018M640314);黑龙江省杰出青年科学基金(JJ2017JQ0018);黑龙江省科学院杰出青年基金(CXJQ2017SH01)

References

[1]  赵新福, 张清杰, 郭健, 等. 环氧化合物上浆处理的MWCNTs对MWCNTs/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2017, 34(2):247-255. ZHAO X F, ZHANG Q J, GUO J, et al. Effect of epoxide sizing treated MWCNTs on the properties of MWCNTs/epoxy composites[J]. Acta Materiae Compositae Sinica, 2017, 34(2):247-255(in Chinese).
[2]  曲春艳, 肖万宝, 王德志, 等. 乙炔基聚酰亚胺/氰酸酯互穿网络结构的固化动力学及性能[J]. 高分子材料科学与工程, 2016, 32(2):83-89. QU C Y, XIAO W B, WANG D Z, et al. Curing kinetics and properties of ethynyl terminated polyimide and cyanate ester sequential interpenetrating polymer network system[J]. Polymer Materials Science and Engineering, 2016, 32(2):83-89(in Chinese).
[3]  WU Z, ZHAO L, QI L, et al. Improved cyanate resin with low dielectric constant and high toughness prepared using inorganic-organic hybrid porous silica[J]. Chemistry Letters, 2016, 46(1):139-142.
[4]  HAN C, GU A, LIANG G, et al. Carbon nanotubes/cyanate ester composites with low percolation threshold, high dielectric constant and outstanding thermal property[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(9):1321-1328.
[5]  WANG Y, KOU K, WU G, et al. The curing reaction of benzoxazine with bismaleimide/cyanate ester resin and the properties of the terpolymer[J]. Polymer, 2015, 77:354-360.
[6]  YUAN W, FENG J, JUDEH Z, et al. Use of polyimide-graft-bisphenol a diglyceryl acrylate as a reactive noncovalent dispersant of single-walled carbon nanotubes for reinforcement of cyanate ester/epoxy composite[J]. Chemistry of Materials, 2010, 22(24):6542-6554.
[7]  WANG B, QIN D, LIANG G, et al. High-k materials with low dielectric loss based on two superposed gradient carbon nanotube/cyanate ester composites[J]. The Journal of Physical Chemistry, 2013, 117(30):15487-15495.
[8]  LI X, GAO H, SCRIVENS W A, et al. Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites[J]. Nanotechnology, 2004, 15(11):1416-1423.
[9]  WANG G, FU G, GAO T, et al. Preparation and characterization of novel film adhesives based on cyanate ester resin for bonding advanced radome[J]. International Journal of Adhesion and Adhesives, 2016, 68:80-86.
[10]  WU H, GU A, LIANG G, et al. Novel permittivity gradient carbon nanotubes/cyanate ester composites with high permittivity and extremely low dielectric loss[J]. Journal of Materials Chemistry, 2011, 21(38):14838-14848.
[11]  胡松青, 吕强, 王志坤, 等. 碳纳米管/聚合物复合材料界面结合性能的研究进展[J]. 复合材料学报, 2017, 34(1):12-22.HU S Q, LV Q, WANG Z K, et al. Advances in the interfacial bonding characteristics of carbon nanotube/polymer composites[J]. Acta Materiae Compositae Sinica, 2017, 34(1):12-22(in Chinese).
[12]  FANG Z, WANG J, GU A. Structure and properties of multiwalled carbon nanotubes/cyanate ester composites[J]. Polymer Engineering & Science, 2006, 46(5):670-679.
[13]  MA X, SCARPA F, PENG H X, et al. Design of a hybrid carbon fibre/carbon nanotube composite for enhanced lightning strike resistance[J]. Aerospace Science and Technology, 2015, 47:367-377.
[14]  GANGULI S, BHUYAN M, ALLIE L, et al. Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy[J]. Journal of Materials Science, 2005, 40(13):3593-3595.
[15]  王结良, 梁国正, 赵雯, 等. 液体端羧基丁腈橡胶增韧改性氰酸酯树脂[J]. 复合材料学报, 2005, 22(1):1-5. WANG J L, LIANG G Z, ZHAO W, et al. Cyanate esters modified by carboxyl-terminated liquid butadiene-acrylonitrile[J]. Acta Materiae Compositae Sinica, 2005, 22(1):1-5(in Chinese).
[16]  中国国家标准化管理委员会. 树脂浇注体性能试验方法:GBT 2567-2008[S]. 北京:中国标准出版社, 2008. Standardization Administration of the People's Republic of China. Test methods for properties of resin casting boby:GBT 2567-2008[S]. Beijing:China Standards Press, 2008(in Chinese).
[17]  TANG Y S, KONG J, GU J W, et al. Reinforced cyanate ester resins with carbon nanotubes:Surface modification, reaction activity and mechanical properties analyses[J]. Polymer-Plastics Technology and Engineering, 2009, 48(4):359-366.
[18]  范雨娇, 顾轶卓, 邓火英, 等. 碳纳米管加入方式对碳纤维/环氧树脂复合材料层间性能的影响[J]. 复合材料学报, 2015, 32(2):332-340. FAN Y J, GU Y Z, DENG H Y, et al. Effect of adding method of carbon nanotube on interlaminar property of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2015, 32(2):332-340(in Chinese).
[19]  邢丽英, 蒋诗才, 周正刚. 先进树脂基复合材料制造技术进展[J]. 复合材料学报, 2013, 30(2):1-9. XING L Y, JIANG S C, ZHOU Z G. Progress of manufacturing technology development of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2):1-9(in Chinese).
[20]  刘千立, 王晓蕾, 李敏, 等. 取向碳纳米管膜/氰基树脂复合材料的制备与性能强化机制[J]. 复合材料学报, 2017, 34(12):2653-2660. LIU Q L, WAGN X L, LI M, et al. Fabrication and strengthen mechanisms of aligned carbon nanotube sheet/cyano resin composites[J]. Acta Materiae Compositae Sinica, 2017, 34(12):2653-2660(in Chinese).
[21]  GU A, LIANG G, LIANG D, et al. Bismaleimide/carbon nanotube hybrids for potential aerospace application Ⅰ:Static and dynamic mechanical properties[J]. Polymers for Advanced Technologies, 2007, 18(10):835-840
[22]  董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2):273-285. DONG H M, YI X S, AN X F, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):273-285(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133